K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2017

Giải dc cho tiền tỳ!

29 tháng 3 2017

ko hỉu đề bài thui        

29 tháng 3 2017

Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1

Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3

vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz

Dấu = xảy ra khi x =1, y =2, z = 3

Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)

30 tháng 4 2017

 1)    \(25x^4-10x^2y+y^2\)

\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)

\(\Leftrightarrow\left(5x^2+y\right)^2\)

 2)   \(x^4+2x^3-4x-4\)

\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

 \(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)

 3)  \(x^4+x^2+1\)

\(\Leftrightarrow x^4+x^2-x+x+1\)

 \(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)

 4)    \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)

\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)

 5)  \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)

\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)

\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\) 

\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)

1 tháng 5 2017

Cảm ơn bạn Nguyễn Kim Thương :))

28 tháng 3 2017

\(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Do a>b>0 nên a-b>0. Áp dụng bất đẳng thức Cô-si cho 3 số dương ta được:

\(\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt{\left(a-b\right).b.\frac{1}{b\left(a-b\right)}}=3\)

=>\(a+\frac{1}{b\left(a-b\right)}\ge3\) (đpcm)

Dấu "=" xảy ra khi a=2;b=1

28 tháng 3 2017

<=>  (x+x +4)2 + 2 . 4x(x2+ x + 4) + (4x)2 = 0

<=>  ( x2 + x+ 4 +4x )2 = 0

<=>  [(x2 + x) + (4 +4x)]  =0

<=>  [x(x+1) + 4(1+x)]  =0

<=>  (x+1) + (x+4)  =0

  • x+1 = 0 <=> x= -1
  • x+4 = 0 <=> x= -4
28 tháng 3 2017

Xét\(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{a^2+1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\)

Áp dụng bất đẳng thức Cô-si với 2 số dương ta được:

\(\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\sqrt{\sqrt{a^2+1}.\frac{1}{\sqrt{a^2+1}}}=2\)=>\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)(đpcm)

Dấu "=" xảy ra khi a=0

28 tháng 3 2017

Hình như đề là a2+b2 thôi chứ có cả 1+a2+b2 luôn à? Mình làm theo cái đề có a2+b2 chứ không có +1 nhé!

Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:

\(B=\frac{1^2}{a^2+b^2}+\frac{1^2}{2ab}\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)

mà a;b>0 => a+b>0 và \(a+b\le1\Rightarrow\left(a+b\right)^2\le1\) => \(\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)

=>\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4\Rightarrow B_{min}=4\)  <=> a=b=0,5

29 tháng 3 2017

@Trà My: có 1+a2+b2 thì vẫn có Min vấn đề là chưa đủ trình độ mà còn đòi tự sửa đề

12 tháng 1 2018

mình làm được phần a thôi, vậy có được không?

28 tháng 3 2017

Câu hỏi của tran huu dinh - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2017

một bài y chang đã làm rồi :)