X8+X8^2=OO
X5+X5^2=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x2 + 1 >=2x . Dấu = xảy ra khi x = 1
Tương tự ta cũng có : y2 +4 >=4y. dấu = xảy ra khi y = 2 ; z2 +9 >=6z, dấu = xảy ra khi y = 3
vì x, y, z > 0, nên nhân từng vế các bđt này ta đc : ( x2 +1)( y2 +4)( z2 +9) >= 48xyz
Dấu = xảy ra khi x =1, y =2, z = 3
Vậy \(P=\frac{1^3+2^3+3^3}{\left(1+2+3\right)^2}=\frac{36}{36}=1\)
1) \(25x^4-10x^2y+y^2\)
\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)
\(\Leftrightarrow\left(5x^2+y\right)^2\)
2) \(x^4+2x^3-4x-4\)
\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)
3) \(x^4+x^2+1\)
\(\Leftrightarrow x^4+x^2-x+x+1\)
\(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)
4) \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)
\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)
5) \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)
\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)
\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\)
\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)
\(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)
Do a>b>0 nên a-b>0. Áp dụng bất đẳng thức Cô-si cho 3 số dương ta được:
\(\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt{\left(a-b\right).b.\frac{1}{b\left(a-b\right)}}=3\)
=>\(a+\frac{1}{b\left(a-b\right)}\ge3\) (đpcm)
Dấu "=" xảy ra khi a=2;b=1
<=> (x2 +x +4)2 + 2 . 4x(x2+ x + 4) + (4x)2 = 0
<=> ( x2 + x+ 4 +4x )2 = 0
<=> [(x2 + x) + (4 +4x)] =0
<=> [x(x+1) + 4(1+x)] =0
<=> (x+1) + (x+4) =0
Xét\(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{a^2+1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\)
Áp dụng bất đẳng thức Cô-si với 2 số dương ta được:
\(\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\sqrt{\sqrt{a^2+1}.\frac{1}{\sqrt{a^2+1}}}=2\)=>\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)(đpcm)
Dấu "=" xảy ra khi a=0
Hình như đề là a2+b2 thôi chứ có cả 1+a2+b2 luôn à? Mình làm theo cái đề có a2+b2 chứ không có +1 nhé!
Áp dụng bất đẳng thức Cauchy Schawrz dạng Engel ta được:
\(B=\frac{1^2}{a^2+b^2}+\frac{1^2}{2ab}\ge\frac{\left(1+1\right)^2}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)
mà a;b>0 => a+b>0 và \(a+b\le1\Rightarrow\left(a+b\right)^2\le1\) => \(\frac{4}{\left(a+b\right)^2}\ge\frac{4}{1}=4\)
=>\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge4\Rightarrow B_{min}=4\) <=> a=b=0,5
@Trà My: có 1+a2+b2 thì vẫn có Min vấn đề là chưa đủ trình độ mà còn đòi tự sửa đề
Giải dc cho tiền tỳ!
ko hỉu đề bài thui