\(\left(5x^6y^7+4x^5y^6+3x^4y^5\right)\):\(\left(-x^3y^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{8x^4y^3+24x^3y^2-2x^2y^2}{4x^2y^2}\)
\(=\dfrac{8x^4y^3}{4x^2y^2}+\dfrac{24x^3y^2}{4x^2y^2}-\dfrac{2x^2y^2}{4x^2y^2}\)
\(=2x^2y+6x-\dfrac{1}{2}\)
a: Ta có: \(AM=MB=\dfrac{AB}{2}\)
\(DP=PC=\dfrac{DC}{2}\)
mà AB=DC
nên AM=MB=DP=PC
Xét tứ giác MBCP có
MB//CP
MB=CP
Do đó: MBCP là hình bình hành
Hình bình hành MBCP có \(\widehat{MBC}=90^0\)
nên MBCP là hình chữ nhật
b: Gọi O là trung điểm của BH
Xét ΔHAB có
N,O lần lượt là trung điểm của HA,HB
=>NO là đường trung bình của ΔHAB
=>NO//AB và NO=1/2AB
Ta có: NO//AB
AB\(\perp\)BC
=>NO\(\perp\)BC
Xét ΔBNC có
NO,BH là các đường cao
NO cắt BH tại O
Do đó: O là trực tâm của ΔBNC
=>CO\(\perp\)BN
Ta có: \(NO=\dfrac{1}{2}AB\)
AB=CD
\(CP=\dfrac{CD}{2}\)
Do đó: NO=CP
Xét tứ giác NOCP có
NO//CP
NO=CP
Do đó: NOCP là hình bình hành
=>NP//OC
mà OC\(\perp\)BN
nên BN\(\perp\)NP
c: Xét tứ giác ADBK có
M là trung điểm chung của AB và DK
=>ADBK là hình bình hành
=>KB//AD
mà BC//AD
và KB,BC có điểm chung là B
nên K,B,C thẳng hàng
a: Xét tứ giác ADME có
AD//ME
AE//MD
Do đó: ADME là hình bình hành
Hình bình hành ADME có \(\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Sửa đề: ACMN là hình bình hành
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MD//AB
Do đó: D là trung điểm của AC
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
=>AMBN là hình bình hành
Hình bình hành AMBN có MN\(\perp\)AB
nên AMBN là hình thoi
=>AN//BM và AN=BM
Ta có: AN//BM
M thuộc BC
Do đó: AN//MC
Ta có: AN=BM
BM=MC
Do đó: AN=MC
Xét tứ giác ACMN có
AN//CM
AN=CM
Do đó: ACMN là hình bình hành
c: D là trung điểm của AC
=>\(AD=DC=\dfrac{AC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
E là trung điểm của AB
=>\(AE=EB=\dfrac{AB}{2}=\dfrac{6}{2}=3\left(cm\right)\)
ADME là hình chữ nhật
=>\(S_{ADME}=AD\cdot AE=3\cdot4=12\left(cm^2\right)\)
ACMN là hình bình hành
=>MN=AC
=>MN=8(cm)
AMBN là hình thoi
=>\(S_{AMBN}=\dfrac{1}{2}\cdot AB\cdot MN=\dfrac{1}{2}\cdot6\cdot8=3\cdot8=24\left(cm^2\right)\)
d: Để AMBN là hình thoi thì \(\widehat{AMB}=90^0\)
=>AM\(\perp\)BC
Xét ΔABC có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔABC cân tại A
=>AB=AC
Mình cần giúp mong các bạn giúp mình :((( mình đang vội
M = 3\(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028
M = 2\(x^2\) + \(x^2\) + y2 - 8\(x\) - 4y + 2\(xy\) + 2028
M = (2\(x^2\) - 8\(x\) + 8) + (\(x^2\) + 2\(xy\) + y2) + 2020
M = 2.(\(x^2\) - 4\(x\) + 4) + (\(x+y\))2 + 2020
M = 2.(\(x-2\))2 + (\(x+y\))2 + 2020
Vì (\(x-2\))2 ≥ 0 ∀ \(x\); 2.(\(x-2\))2 ≥ 0; (\(x+y\))2 \(\ge\) 0 \(\forall\) \(x;y\)
⇒ 2.(\(x-2\))2 + (\(x+y\))2 + 2020 ≥ 2020
Vậy Mmin = 2020 khi \(\left\{{}\begin{matrix}x-2=0\\x+y=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=2\\y=-x\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
Vậy giái trị nhỏ nhất của biểu thức M là 2020 xảy ra khi (\(x;y\))=(2; -2)
\(M=\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4+\left(2x^2-4x+2\right)+2022\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+2\left(x-1\right)+2022\)
\(=\left(x+y-2\right)^2+2\left(x-1\right)^2+2022\)
Do \(\left\{{}\begin{matrix}\left(x+y-2\right)^2\ge0\\2\left(x-1\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow M\ge2022\)
Vậy \(M_{min}=2022\) khi \(\left\{{}\begin{matrix}x+y-2=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow x=y=1\)
Olm chào em, hiện tại câu hỏi của em chưa hiển thị đấy có thể là do file mà em tải lên bị lỗi nên đã không hiển thị trên diễn đàn. Em nên viết đề bài trực tiếp trên Olm. Như vậy em sẽ không mắc phải lỗi file đề như vậy. Điều này giúp em nhanh chóng nhận được sự trợ giúp từ cộng đồng olm. Cảm ơn em đã đồng hành cùng Olm.
Nếu đề là \(\left(\dfrac{a+b}{b+c}+\dfrac{b-c}{b-a}\right).\dfrac{a-2b+3c}{a+c}\) thì có đúng đâu em
Em cứ thay thử \(a=1;b=2,c=\sqrt{3}\) thỏa mãn \(a^2+2b^2=3c^2\) vào biểu thức là thấy
Kết quả ko phải 1 số nguyên dương
\(\dfrac{5x^6y^7+4x^5y^6+3x^4y^5}{-x^3y^2}\)
\(=\dfrac{-5x^6y^7}{x^3y^2}-\dfrac{4x^5y^6}{x^3y^2}-\dfrac{3x^4y^5}{x^3y^2}\)
\(=-5x^3y^5-4x^2y^4-3xy^3\)