Chứng minh rằng nếu $a \ge b$, $x \ge y$ thì $\dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}2$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2+4y2+4xy>6y−4(1)4x2+4y2+4xy>6y-4(1)
⇔4x2+4y2+4xy−6y+4>0(2)⇔4x2+4y2+4xy-6y+4>0(2)
⇔4x2+4xy+y2+3y2−6y+3+1>0⇔4x2+4xy+y2+3y2-6y+3+1>0
⇔(2x+y)2+3(y2−2y+1)+1>0⇔(2x+y)2+3(y2-2y+1)+1>0
⇔(2x+y)2+3(y−1)2+1>0⇔(2x+y)2+3(y-1)2+1>0
+)(2x+y)2≥0+)(2x+y)2≥0
3(y−1)2≥03(y-1)2≥0
→(2x+y)2+3(y−1)2≥0→(2x+y)2+3(y-1)2≥0
→(2x+y)2+3(y−1)2+1≥1>0→(2x+y)2+3(y-1)2+1≥1>0
BĐT(2) luôn đúng
→→ BĐT(1) luôn đúng
Vậy 4x2+4y2+4xy>6y−4
Ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy4x2+4y2+6x+3≥4xy
\Leftrightarrow (x^2 - 4xy + 4y^2) + 3(x^2 + 2x +1) \ge 0⇔(x2−4xy+4y2)+3(x2+2x+1)≥0
\Leftrightarrow (x-2y)^2 + 3(x +1)^2 \ge 0⇔ (x−2y)2+3(x +1)2≥0 (luôn đúng với mọi xx, yy).
Vậy với mọi xx, yy ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy4x2+4y2+6x+3≥4xy.
\(a+b+c+d+e\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow\left(a-kb\right)^2+\left(a-kc\right)^2+\left(a-kd\right)^2+\left(a-ke\right)^2\ge0\)
Ta chọn \(k=2\)hay nhân 2 vế với 4
*Xét hiệu 2 vế bất đẳng thức.
\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
\(=\frac{4\left(a^2+b^2+c^2+d^2+e^2\right)-4\left(ab+ac+ad+ae\right)}{4}\)
\(=\frac{\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)}{4}\)
\(=\frac{\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2}{4}\ge0\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)
Đẳng thức xảy ra khi\(a=2b=2c=2d=2e\)
n chia hết cho 3 => n =3k (k ∈Z)
n(n+1) =3k (3k+1)
nếu k le ; k =2t+1 (t ∈Z)
3k (3k+1) =3(2t+1 )[ (3.(2t+1) +1 ] =3(2t+1 )[6t+3 +1) =3.(2t+1 )[6t+4)
=3(2t+1 ).2.(3t+2) =6(2t+1 ) (3t+2) chia hết cho 6
nếu k chẵn ; k =2t (t ∈Z)
3k (3k+1) =6t (3k+1 ] = chia hết cho 6
=> n(n+1) chia hết cho 6 nếu n chia hết cho 3=> dpcm
ếu nn chia hết cho 33 thì n = 3kn=3k với k \in \mathbb{N}k∈N.
Xét k=2mk=2m thì n = 6mn=6m suy ra n(n+1) = 6m(6m+1)n(n+1)=6m(6m+1) chia hết cho 66.
Xét k = 2m+1k=2m+1 thì n = 3(2m+1) = 6m+3n=3(2m+1)=6m+3.
Suy ra n(n+1) = (6m+3)(6m+4) = 3.(2m+1).2(3m+2) = 6.(2m+1).(3m+2)n(n+1)=(6m+3)(6m+4)=3.(2m+1).2(3m+2)=6.(2m+1).(3m+2) chia hết cho 66.
Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ
Nếu nn lẻ thì nn có dạng n = 2k+1n=2k+1 với k \in \mathbb{N}k∈N.
Do đó n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k+1 = 2(k^3 + 6k^2 + 3k) + 1n3=(2k+1)3=8k3+12k2+6k+1=2(k3+6k2+3k)+1.
Suy ra n^3n3 lẻ.
Vậy với mọi số tự nhiên nn, nếu nn lẻ thì n^3n3 lẻ.
Cho \(x\ne-1;y\ne-1\)
Giả sử: \(x+y+xy=-1\)
<=>\(x+xy+y+1=0\)
<=>\(\left(x+xy\right)+\left(y+1\right)=0\)
<=>\(x\left(y+1\right)+\left(y+1\right)=0\)
<=>\(\left(x+1\right)\left(y+1\right)=0\)
<=>\(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}}\)(Trái với điều giả thiết)
=>\(x+y+xy\ne-1\)
Giả sử x + y + xy = -1x + y + xy = −1.
\Rightarrow x + y + xy + 1 = 0 \Leftrightarrow (x + 1)(y + 1) = 0⇒ x + y + xy + 1= 0⇔ (x+1)(y+1) = 0
<=> \(\left[{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\) ( mâu thuẫn với giả thiết)
Vậy nếu x ≠ -1 và y ≠ -1 thì x = y + xy ≠ -1
Giả sử a <0
Vì abc>0 nên bc <0
Có ab+bc+ca>0
<=>a(b+c)>-bc
Vì bc<0=>-bc>0
=>a(b+c)>0
Mà a<0 nên b+c<0
=> a+b+c<0
Mà theo đề a+b+c>0
=> điều giả sử sai
=> điều pk chứng minh
Giả sử ba số aa, bb, cc không đồng thời là các số dương thì có ít nhất một số không dương.
Không mất tính tổng quát, ta giả sử a ≤ 0
Nếu a = 0a = 0 thì abc = 0abc = 0 (mâu thuẫn với giả thiết abc>0abc > 0)
Nếu a < 0a < 0 thì từ abc > 0 \Rightarrow bc < 0abc > 0⇒ bc < 0.
Ta có ab + bc + ca > 0 \Leftrightarrow a(b + c) > -bc \Rightarrow a(b+c) > 0 \Rightarrow b + c < 0 \Rightarrow a + b + c < 0ab + bc + ca > 0 ⇔ a(b+c) > − bc ⇒ a(b+c) > 0 ⇒ b + c < 0 ⇒ a + b + c < 0 (mâu thuẫn với giả thiết)
Vậy cả ba số aa, bb và cc đều dương.
Tham khảo:
Gỉa sử : a+b+c> 1/a + 1/b + 1/c nhưng không thỏa mãn một và chỉ một trong 3 số a,b,c lớn hơn 1
*TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1)
*TH2: có 2 số lớn hơn 1
Gỉa sử: a>1, b>1, c<1 <=> a-1>0 , b-1>0 , c-1<0
=> (a-1)(b-1)(c-1)<0
=>abc+a+b+c-(ab+bc+ca)-1<0
<=>a+b+c<ab+bc+ca
<=>a+b+c<abc/c+abc/a+abc/b
Thay abc=1 ta được:
a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai)
=>đpcm
Trường hợp 1: Giả sử ba số aa, bb, cc đều lớn hơn 11 hoặc ba số aa, bb, cc đều nhỏ hơn 11.
Khi đó a.b.c \ne 1
a.b.c ≠ 1 (trái với giả thiết).
Trường hợp 2: Giả sử hai trong ba số aa, bb, cc lớn hơn 1.
Không mất tính tổng quát, giả sử a > 1a > 1 và b > 1b > 1.
Vì a.b.c = 1a.b.c = 1 nên c < 1c < 1 do đó:
(a - 1).(b -1).(c - 1) < 0(a − 1).(b − 1).(c − 1) < 0
\Leftrightarrow abc + a+b+c - ab - ac - ca - 1 < 0⇔ abc + a + b + c − ab − ac − ca − 1 < 0
\Leftrightarrow a+b+c - ab - ac - ca < 0⇔ a + b + c − ab − ac − ca < 0
\Leftrightarrow a+b+c < ab + ac + ca ⇔ a + b + c < ab + ac + ca
⇔ a + b + c < \(\dfrac{abc}{c}\) + \(\dfrac{abc}{a}\) + \(\dfrac{abc}{b}\)
⇔ a + b + c < \(\dfrac{1}{c}\) + \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) (mâu thuẫn với giả thiết)
Vậy chỉ có một và chỉ một trong ba số aa, bb, cc lớn hơn 11
ta có :
\(\frac{ax+by}{2}\ge\frac{a+b}{2}.\frac{x+y}{2}\Leftrightarrow2\left(ax+by\right)\ge\left(a+b\right)\left(x+y\right)\)
\(\Leftrightarrow2\left(ax+by\right)\ge ax+ay+bx+by\)
\(\Leftrightarrow ax-ay+by-bx\ge0\Leftrightarrow\left(a-b\right)\left(x-y\right)\ge0\)
Điều này đúng do giả thuyết \(a\ge b,x\ge y\)
Ta có \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by≥ 2a+b. 2x+ y
\Leftrightarrow 2(ax+by) \ge (a + b)(x + y)⇔2(ax+by) ≥ (a+b)(x+y)
\Leftrightarrow 2(ax+by) \ge ax + ay + bx + by⇔2(ax+by) ≥ax+ay+bx+by
\Leftrightarrow ax + by - ay - bx \ge 0⇔ax+by−ay−bx ≥0
\Leftrightarrow (a - b)(x - y) \ge 0⇔(a−b)(x−y)≥0 (luôn đúng vì giả thiết a \ge ba≥b và x \ge yx≥y).
Vậy nếu a \ge ba≥b, x \ge yx≥y thì \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by≥ 2a+b. 2x+ y.