K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
9 tháng 2 2022

ta có :

\(\frac{ax+by}{2}\ge\frac{a+b}{2}.\frac{x+y}{2}\Leftrightarrow2\left(ax+by\right)\ge\left(a+b\right)\left(x+y\right)\)

\(\Leftrightarrow2\left(ax+by\right)\ge ax+ay+bx+by\)

\(\Leftrightarrow ax-ay+by-bx\ge0\Leftrightarrow\left(a-b\right)\left(x-y\right)\ge0\)

Điều này đúng do giả thuyết \(a\ge b,x\ge y\)

25 tháng 7 2022

Ta có \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by 2a+b2x+ y

\Leftrightarrow 2(ax+by) \ge (a + b)(x + y)2(ax+by)  (a+b)(x+y)

\Leftrightarrow 2(ax+by) \ge ax + ay + bx + by2(ax+by) ax+ay+bx+by

\Leftrightarrow ax + by - ay - bx \ge 0ax+byaybx 0

\Leftrightarrow (a - b)(x - y) \ge 0(ab)(xy)0 (luôn đúng vì giả thiết a \ge bab và x \ge yxy).

Vậy nếu a \ge babx \ge yxy thì \dfrac{ax + by}2 \ge \dfrac{a + b}2 . \dfrac{x + y}22ax+by 2a+b2x+ y.

25 tháng 7 2022

4x2+4y2+4xy>6y4(1)4x2+4y2+4xy>6y-4(1)

4x2+4y2+4xy6y+4>0(2)⇔4x2+4y2+4xy-6y+4>0(2)

4x2+4xy+y2+3y26y+3+1>0⇔4x2+4xy+y2+3y2-6y+3+1>0

(2x+y)2+3(y22y+1)+1>0⇔(2x+y)2+3(y2-2y+1)+1>0

(2x+y)2+3(y1)2+1>0⇔(2x+y)2+3(y-1)2+1>0

+)(2x+y)20+)(2x+y)2≥0

3(y1)203(y-1)2≥0

(2x+y)2+3(y1)20→(2x+y)2+3(y-1)2≥0

(2x+y)2+3(y1)2+11>0→(2x+y)2+3(y-1)2+1≥1>0

BĐT(2) luôn đúng

 BĐT(1) luôn đúng

Vậy 4x2+4y2+4xy>6y4

25 tháng 7 2022

Ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy4x2+4y2+6x+34xy

\Leftrightarrow (x^2 - 4xy + 4y^2) + 3(x^2 + 2x +1) \ge 0(x24xy+4y2)+3(x2+2x+1)0

\Leftrightarrow (x-2y)^2 + 3(x +1)^2 \ge 0 (x2y)2+3(x +1)20 (luôn đúng với mọi xxyy).

Vậy với mọi xxyy ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy4x2+4y2+6x+34xy.

9 tháng 2 2022

\(a+b+c+d+e\ge a\left(b+c+d+e\right)\)

\(\Leftrightarrow\left(a-kb\right)^2+\left(a-kc\right)^2+\left(a-kd\right)^2+\left(a-ke\right)^2\ge0\)

Ta chọn \(k=2\)hay nhân 2 vế với 4

*Xét hiệu 2 vế bất đẳng thức.

\(a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

\(=\frac{4\left(a^2+b^2+c^2+d^2+e^2\right)-4\left(ab+ac+ad+ae\right)}{4}\)

\(=\frac{\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)}{4}\)

\(=\frac{\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2}{4}\ge0\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2-a\left(b+c+d+e\right)\)

Đẳng thức xảy ra khi\(a=2b=2c=2d=2e\)

n chia hết cho 3 => n =3k (k ∈Z)
n(n+1) =3k (3k+1) 
nếu k le ; k =2t+1 (t ∈Z)
3k (3k+1) =3(2t+1 )[ (3.(2t+1) +1 ] =3(2t+1 )[6t+3 +1) =3.(2t+1 )[6t+4)
=3(2t+1 ).2.(3t+2) =6(2t+1 ) (3t+2) chia hết cho 6
nếu k chẵn ; k =2t (t ∈Z)
3k (3k+1) =6t (3k+1 ] = chia hết cho 6
=> n(n+1) chia hết cho 6 nếu n chia hết cho 3=> dpcm

25 tháng 7 2022

ếu nn chia hết cho 33 thì n = 3kn=3k với k \in \mathbb{N}kN.

loading... Xét k=2mk=2m thì n = 6mn=6m suy ra n(n+1) = 6m(6m+1)n(n+1)=6m(6m+1) chia hết cho 66.

loading... Xét k = 2m+1k=2m+1 thì n = 3(2m+1) = 6m+3n=3(2m+1)=6m+3.

Suy ra n(n+1) = (6m+3)(6m+4) = 3.(2m+1).2(3m+2) = 6.(2m+1).(3m+2)n(n+1)=(6m+3)(6m+4)=3.(2m+1).2(3m+2)=6.(2m+1).(3m+2) chia hết cho 66.

Nếu n lẻ thì n3 lẻ
n lẻ <=> n =2k +1 (k ∈ Z)
n^3 =(2k +1)3 =8k3 +3.4k2 +3.2k +1=2( 4k3 +6k2 +3 k) +1
2( 4k3 +6k2 +3 k) chia hết cho 2 => là số chẵn 
=>2( 4k3 +6k2 +3 k) +1 là số lẻ => n3 lẻ

16 tháng 7 2022

 

Nếu nn lẻ thì nn có dạng n = 2k+1n=2k+1 với k \in \mathbb{N}kN.

Do đó n^3 = (2k+1)^3 = 8k^3 + 12k^2 + 6k+1 = 2(k^3 + 6k^2 + 3k) + 1n3=(2k+1)3=8k3+12k2+6k+1=2(k3+6k2+3k)+1.

Suy ra n^3n3 lẻ.

Vậy với mọi số tự nhiên nn, nếu nn lẻ thì n^3n3 lẻ.

Cho \(x\ne-1;y\ne-1\)

Giả sử: \(x+y+xy=-1\)

<=>\(x+xy+y+1=0\)

<=>\(\left(x+xy\right)+\left(y+1\right)=0\)

<=>\(x\left(y+1\right)+\left(y+1\right)=0\)

<=>\(\left(x+1\right)\left(y+1\right)=0\)

<=>\(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}}\)(Trái với điều giả thiết)

=>\(x+y+xy\ne-1\)

16 tháng 7 2022

Giả sử x + y + xy = -1x1.

\Rightarrow x + y + xy + 1 = 0 \Leftrightarrow (x + 1)(y + 1) = 0⇒ x10⇔ (x+1)(y+10

<=> \(\left[{}\begin{matrix}x+1=0\\y+1=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-1\\y=-1\end{matrix}\right.\) ( mâu thuẫn với giả thiết)

Vậy nếu x ≠ -1 và y ≠ -1 thì x = y + xy ≠ -1

Giả sử a <0

Vì abc>0 nên bc <0

Có ab+bc+ca>0

<=>a(b+c)>-bc

Vì bc<0=>-bc>0

=>a(b+c)>0

Mà a<0 nên b+c<0

=> a+b+c<0

Mà theo đề a+b+c>0

=> điều giả sử sai

=> điều pk chứng minh

16 tháng 7 2022

Giả sử ba số aabbcc không đồng thời là các số dương thì có ít nhất một số không dương.

Không mất tính tổng quát, ta giả sử a ≤ 0 

loading... Nếu a = 00 thì abc = 0ab0 (mâu thuẫn với giả thiết abc>0ab0)

loading... Nếu a < 00 thì từ abc > 0 \Rightarrow bc < 0ab0⇒ b0.

Ta có ab + bc + ca > 0 \Leftrightarrow a(b + c) > -bc \Rightarrow a(b+c) > 0 \Rightarrow b + c < 0 \Rightarrow a + b + c < 0ab bc⇔ a(b+c− b⇒ a(b+c⇒ ⇒ 0 (mâu thuẫn với giả thiết)

Vậy cả ba số aabb và cc đều dương.

Tham khảo:

Gỉa sử : a+b+c> 1/a + 1/b + 1/c nhưng không thỏa mãn một và chỉ một trong 3 số a,b,c lớn hơn 1

*TH1:Cả 3 số a,b,c đều lớn hơn 1 hoặc đều nhỏ hơn 1 suy ra mâu thẫn( vì abc=1)

*TH2: có 2 số lớn hơn 1

Gỉa sử: a>1, b>1, c<1 <=> a-1>0 , b-1>0 , c-1<0

=> (a-1)(b-1)(c-1)<0 

=>abc+a+b+c-(ab+bc+ca)-1<0

<=>a+b+c<ab+bc+ca 

<=>a+b+c<abc/c+abc/a+abc/b 

Thay abc=1 ta được:

a+b+c<1/a+1/b+1/c(mâu thuẫn với giả thuyết nên điều giả sử sai)

=>đpcm

16 tháng 7 2022
 

loading... Trường hợp 1: Giả sử ba số aabbcc đều lớn hơn 11 hoặc ba số aabbcc đều nhỏ hơn 11.

Khi đó a.b.c \ne 1
 
a.b.≠ 1 (trái với giả thiết).

loading... Trường hợp 2: Giả sử hai trong ba số aabbcc lớn hơn 1.

Không mất tính tổng quát, giả sử a > 11 và b > 11.

Vì a.b.c = 1a.b.1 nên c < 1c < 1 do đó:

     (a - 1).(b -1).(c - 1) < 0(− 1).(− 1).(− 10

\Leftrightarrow abc + a+b+c - ab - ac - ca - 1 < 0⇔ ab− ab − a− c− 0

\Leftrightarrow a+b+c - ab - ac - ca  < 0⇔ − ab − a− ca 0

\Leftrightarrow a+b+c < ab + ac + ca ⇔ ab aca 

⇔ c < \(\dfrac{abc}{c}\) + \(\dfrac{abc}{a}\) + \(\dfrac{abc}{b}\)

⇔ c < \(\dfrac{1}{c}\) \(\dfrac{1}{a}\) + \(\dfrac{1}{b}\) (mâu thuẫn với giả thiết)

Vậy chỉ có một và chỉ một trong ba số aabbcc lớn hơn 11