Con mượn mẹ 50 mươi ngàn , mượn ba 50 mươi ngàn . mua đồ hết 97 ngàn dư 3 ngàn . Trả mẹ 1 ngàn còn 49 ngàn và bố cũng như thế . Cả hai cộng lại hết 98 ngàn còn 1 ngàn cộng vào luôn là 99 . Hỏi còn 1 ngàn nữa đâu rồi ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sai ở câu 4 vì (4x2 - 9) : (2x + 3) = (2x - 3) không dư nên đáp án phải là 0
k cho mình nhé
Câu 5 sai rồi vì nếu x=2 thì đẳng thức x^2 -8x +15 sẽ bằng 3 nên x phải bằng 3
a) x2 - 2xy + y2 + 1 = (x-y)2 + 1 \(\ge\)1
=> (x-y)2 +1 >0 => x2 - 2xy + y2 >0
b) x - x2 - 1 = -(x2 - x + \(\frac{1}{4}\)) - \(\frac{3}{4}\)= - (x-\(\frac{1}{2}\))2 - \(\frac{3}{4}\)< 0 => x - x2 - 1 <0
a) Ta có:
\(x^2-2xy+y^2+1\)
\(=\left(x^2-2xy+y^2\right)+1\)
.\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)với mọi \(x,y\in R\)
\(\Rightarrow x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\ge0+1=1>0 \forall x,y\in R\left(đpcm\right)\)
b) Ta có :
\(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{2^2}+1-\frac{1}{2^2}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Ta có :
\(\left(x-\frac{1}{2}\right)^2\ge0\)với mọi số thực x
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0+\frac{3}{4}=\frac{3}{4}>0\)với mọi số thực x
\(\Rightarrow x-x^2-1=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]< 0\)với mọi số thực ( đpcm )
Ta có
\(2x^2-xy-y^2=x^2-xy+x^2-y^2\) \(=x\left(x-y\right)+\left(x+y\right)\left(x-y\right)\)
\(=\left(x+x+y\right)\left(x-y\right)\)
\(=\left(2x+y\right)\left(x-y\right)\)
a3 + b3 + c3 =3abc => a3 + b3 + c3 - 3abc = 0 => (a+b+c)(a2 + b2 + c2 - ab - bc - ac ) =0
=> a2 + b2 + c2 - ab - bc - ac =0 (vì a+b+c\(\ne\)0)
=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac=0
=>(a-b)2 + (b-c)2 + (a-c)2 =0 => a=b=c => tam giáp ABC đều => góc ABC bằng 60 độ
Áp dụng bất đẳng thức cosi ta được
\(a^3+b^3+c^3\ge3abc\)
Dấu = xảy ra khi a = b = c
Hay tam giác ABC đều
=> Góc ABC = 60°
Ta có
a3 + b3 + c3 - 3abc = 0
<=> (a + b)3 + c3 - 3ab(a + b) - 3abc = 0
<=> (a + b + c)(a2 + b2 + c2 + 2ab - ac - bc) - 3ab(a + b + c) = 0
<=> (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a2 + b2 + c2 - ab - ac - bc) = 0
<=> (a2 - 2ab + b2) + (a2 - 2ac - c2) + (b2 - 2bc + c2) = 0
<=> (a - b)2 + (a - c)2 + (b - c)2 = 0
<=> a = b = c
=> P = (1 + 1)(1 + 1)(1 +1) = 8
Để chia hết thì
\(\hept{\begin{cases}n-1\ge3\\n+1\ge3\\n\le4\end{cases}}\Leftrightarrow\hept{\begin{cases}n\ge4\\n\ge2\\n\le4\end{cases}}\Leftrightarrow n=4\)
ăn trộm
ăn trộm