Cho \(\frac{a}{b}\)= \(\frac{b}{3c}\)=\(\frac{c}{9a}\). CMR : b = c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề, ta có: \(\frac{x}{2}=\frac{y}{-5}\)và \(x-y=-7\)
Theo TC dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
\(\Leftrightarrow\hept{\begin{cases}x=-1.2=-2\\y=-1.-5=5\end{cases}}\)
Gọi x, y, z (máy) lần lượt là số máy san đất của ba đội 1, 2, 3 (x, y, z \(\in\)N*).
Vì các máy có cùng năng suất và ba đội làm 3 khối lượng công việc như nhau nên số máy cần để hoàn thành công việc sẽ tỉ lệ nghịch với số ngày hoàn thành công việc
=> 3x = 5y = 6z
=> \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và x + y + z = 21
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{21}{\frac{7}{10}}=21.\frac{10}{7}=30\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=30\\\frac{y}{\frac{1}{5}}=30\\\frac{z}{\frac{1}{6}}=30\end{cases}\Rightarrow\hept{\begin{cases}x=10\\y=6\\z=5\end{cases}}}\)
Vậy đội I có 10 máy, đội II có 6 máy, đội III có 5 máy.
Gọi lớp 7/1 là :a
Lớp 7/2 là :b
Theo bài ra ta có :
a : b = 8 : 9 \(\Rightarrow\frac{a}{8}=\frac{b}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{a}{8}=\frac{b}{9}=\frac{b-a}{9-8}=\frac{5}{1}=5\)
\(\Rightarrow a=5.8=40\)
\(b=5.9=45\)
Vậy số học sinh lớp 7/1 là : 40 ; số học sinh lớp 7/2 là : 45
Đặt \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}=k\)
Ta có: \(\frac{a}{b}=\frac{b}{3c}=\frac{c}{9a}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{3c}\right)^3=\left(\frac{c}{9a}\right)^3=\frac{a.b.c}{b.3c.9a}=\frac{1}{27}=k^3\)
\(\Rightarrow k=\frac{1}{3}\)
Ta có: \(\frac{b}{3c}=\frac{1}{3}\)
\(\Rightarrow b=\frac{1}{3}.3c=c\)
Vậy \(b=c\left(đpcm\right)\)
đáp số
a=b
hok tốt