[-15:(-3)]-3[2(5-9:3)]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x+9=134.1^{2010}\)
\(5^x+9=134.1\)
\(5^x+9=134\)
\(5^x=134-9\)
\(5^x=125\)
\(5^x=5^3\)
\(x=3\)
Ta có:
\(10^{2025}=10^{3^4.5^2}=\left(10^{81}\right)^{25}\)
\(10\equiv10\left(mod18\right)\)
\(10^8\equiv10\left(mod18\right)\)
\(10^{80}\equiv\left(10^8\right)^{10}\left(mod18\right)\equiv10^{10}\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{81}\equiv10^{80}.10\left(mod18\right)\equiv10.10\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{24}\equiv\left(10^8\right)^3\left(mod18\right)\equiv10^3\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{25}\equiv10^{24}.10\left(mod18\right)\equiv10\left(mod18\right)\)
\(10^{2025}\equiv\left(10^{81}\right)^{25}\left(mod18\right)\equiv10^{25}\left(mod18\right)\equiv10\left(mod18\right)\)
\(\Rightarrow10^{2025}+8\equiv10+8\left(mod18\right)\equiv0\left(mod18\right)\)
Vậy \(\left(10^{2025}+8\right)⋮18\)
Số tiền cô Minh có:
\(24400000+5960000-3670000=26690000\) (đồng)
Đây là toán nâng cao chuyên đề số chính phương, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá. như sau:
Giải:
A = 3n + 6n + 8
Nếu n = 0 thì:
A = 30 + 6.0 + 8 = 9 = 32 (thỏa mãn)
Nếu n ≥ 1 thì:
A ≥ 3n + 6n + 8 = 3.(3n-1 + 2n + 2) + 2
A : 3 dư 2 ( A không phải là số chính phương vì số chính phương chia 3 chỉ có thể dư 1 hoặc không dư)
Vậy n = 0 là số tự nhiên duy nhất thỏa mãn đề bài.
Ta có: \(x^4-4x^3+5x^2-6x+9=0\)
=>\(x^4-4x^3+4x^2+x^2-6x+9=0\)
=>\(\left(x^2-2x\right)^2+\left(x-3\right)^2=0\)
=>\(\left\{{}\begin{matrix}x^2-2x=0\\x-3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{0;2\right\}\\x=3\end{matrix}\right.\)
=>\(x\in\varnothing\)
[ ( - 15 ) : ( - 3 ) ] - 3 . [ 2 . ( 5 - 9 : 3 )]
= 5 - 3 . [ 2 . ( 5 - 3 )]
= 5 - 3 . [ 2 . 2 ]
= 5 - 3 . 4
= 5 - 12
= - 7