cho a,b,c>0 chứng minh rằng: \(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}>=\frac{3\left(a^3+b^3+c^3\right)}{a+b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Thay a = 3 hệ phương trình là :
\(\hept{\begin{cases}x+y=1\\3x+2y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1-y\left(1\right)\\3x+2y=3\left(2\right)\end{cases}}}\)
Thay (1) vào (2) suy ra :
\(3\left(1-y\right)+2y=3\Leftrightarrow3-3y+2y=3\)
\(\Leftrightarrow5y=0\Leftrightarrow y=0\)thế lại vào (1) ta được :
\(x=1-y=1-0=1\)
\(\hept{\begin{cases}x+y=1\\ax+2y=a\end{cases}}\)
a) Với a = 3
hpt ⇔ \(\hept{\begin{cases}x+y=1\left(1\right)\\3x+2y=3\left(2\right)\end{cases}}\)
Nhân 2 vào từng vế của (1)
hpt ⇔ \(\hept{\begin{cases}2x+2y=2\left(3\right)\\3x+2y=3\end{cases}}\)
Lấy (3) - (2) theo vế
⇒ -x = -1 ⇒ x = 1
Thế x = 1 vào (1)
⇒ 1 + y = 1 ⇒ y = 0
Vậy \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
0/0=1 vì a/a=a:a luôn luôn bằng 1. Theo mk thì như thế.
Tk và kb nha Tran Minh