vẽ hình luôn dk ạ mih cần đoạn vẻ hình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-2\right|>=0\forall x\)
\(\left|2x+y-z\right|>=0\forall x,y,z\)
\(\left|2z+1\right|>=0\forall z\)
Do đó: \(\left|x-2\right|+\left|2x+y-z\right|+\left|2z+1\right|>=0\forall x,y,z\)
mà \(\left|x-2\right|+\left|2x+y-z\right|+\left|2z+1\right|< =0\)
nên Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\2x+y-z=0\\2z+1=0\\\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\z=-\dfrac{1}{2}\\y=-2x+z=-2\cdot2+\dfrac{-1}{2}=-4-\dfrac{1}{2}=-\dfrac{9}{2}\end{matrix}\right.\)
\(x^2+3x+1⋮x+1\)
=>\(x^2+x+2x+2-1⋮x+1\)
=>\(-1⋮x+1\)
=>\(x+1\in\left\{1;-1\right\}\)
=>\(x\in\left\{0;-2\right\}\)
bài 10:
\(A=1+2012+2012^2+...+2012^{72}\)
=>\(2012A=2012+2012^2+...+2012^{73}\)
=>\(2012A-A=2012+2012^2+...+2012^{73}-1-2012-...-2012^{72}\)
=>\(2011A=2012^{73}-1\)
=>2011A=B
=>B>A
Bài 11:
\(B=\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}=\dfrac{3^{10}\left(11+5\right)}{3^9\cdot16}=\dfrac{3^{10}}{3^9}=3\)
\(C=\dfrac{2^{10}\cdot13+2^{10}\cdot65}{2^8\cdot104}=\dfrac{2^{10}\left(13+65\right)}{2^8\cdot104}=\dfrac{2^2\cdot78}{104}=\dfrac{4\cdot2}{3}=\dfrac{8}{3}\)
mà \(3>\dfrac{8}{3}\)
nên B>C
6: \(\widehat{mOn}=\widehat{mOy}+\widehat{nOy}\)
\(=\dfrac{1}{2}\left(\widehat{xOy}+\widehat{zOy}\right)\)
\(=\dfrac{1}{2}\cdot180^0=90^0\)
5:
a: tia Oc nằm giữa hai tia Oa và Ob
=>\(\widehat{aOc}+\widehat{bOc}=\widehat{aOb}\)
=>\(\widehat{bOc}=100^0-40^0=60^0\)
b: Od là phân giác của góc cOb
=>\(\widehat{cOd}=\dfrac{\widehat{cOb}}{2}=\dfrac{60^0}{2}=30^0\)
Bài 7:
a: \(\left[0,\left(30\right)+0,\left(60\right)\right]x=10\)
=>\(\left(\dfrac{10}{33}+\dfrac{20}{33}\right)\cdot x=10\)
=>\(\dfrac{30}{33}\cdot x=10\)
=>\(x\cdot\dfrac{10}{11}=10\)
=>\(x=10:\dfrac{10}{11}=11\)
b: \(0,\left(12\right):1,\left(6\right)=x:0,\left(4\right)\)
=>\(x:\dfrac{4}{9}=\dfrac{4}{33}:\dfrac{5}{3}\)
=>\(x:\dfrac{4}{9}=\dfrac{4}{33}\cdot\dfrac{3}{5}=\dfrac{4}{11\cdot5}=\dfrac{4}{55}\)
=>\(x=\dfrac{4}{55}:\dfrac{4}{9}=\dfrac{9}{55}\)
a: \(1,\left(6\right)+\left(\dfrac{-2}{7}\right)-\left(-1,2\right)\)
\(=\dfrac{5}{3}-\dfrac{2}{7}+\dfrac{6}{5}\)
\(=\dfrac{175}{105}-\dfrac{30}{105}+\dfrac{126}{105}=\dfrac{271}{105}\)
b: \(0,\left(3\right)-\dfrac{-5}{6}+\dfrac{3}{4}=\dfrac{1}{3}+\dfrac{5}{6}+\dfrac{3}{4}\)
\(=\dfrac{4}{12}+\dfrac{10}{12}+\dfrac{9}{12}=\dfrac{23}{12}\)
c: \(0,\left(3\right)-1,\left(3\right)+\dfrac{2}{7}=\dfrac{1}{3}-\dfrac{4}{3}+\dfrac{2}{7}=-1+\dfrac{2}{7}=-\dfrac{5}{7}\)
d: \(-0,8\left(3\right)-\left(\dfrac{-3}{8}+\dfrac{1}{10}\right)\)
\(=-\dfrac{5}{6}+\dfrac{3}{8}-\dfrac{1}{10}\)
\(=-\dfrac{100}{120}+\dfrac{45}{120}-\dfrac{12}{120}=\dfrac{-67}{120}\)
Bài 5:
a: \(3,\left(15\right)=3+\dfrac{15}{99}=3+\dfrac{5}{33}=\dfrac{3\cdot33+5}{33}=\dfrac{104}{33}\)
b: \(0,2\left(07\right)=0,2+0,0\left(07\right)=\dfrac{41}{198}\)
c: \(0,1\left(37\right)=0,1+0,0\left(37\right)=\dfrac{1}{10}+\dfrac{37}{990}=\dfrac{68}{495}\)
d: \(0,20\left(23\right)=0,20+0,00\left(23\right)=0,2+\dfrac{23}{9900}=\dfrac{2003}{9900}\)
Bài 2:
Vì \(\widehat{xOz}< \widehat{xOy}\left(50^0< 80^0\right)\)
nên tia Oz nằm giữa hai tia Ox,Oy
=>\(\widehat{xOz}+\widehat{yOz}=\widehat{xOy}\)
=>\(\widehat{yOz}=80^0-50^0=30^0\)
Bài 4:
Ta có: \(\widehat{xEy}+\widehat{xEy'}=180^0\)(hai góc kề bù)
=>\(\widehat{xEy'}=180^0-50^0=130^0\)
Ta có: \(\widehat{xEy}=\widehat{x'Ey'}\)(hai góc đối đỉnh)
mà \(\widehat{xEy}=50^0\)
nên \(\widehat{x'Ey'}=50^0\)
Ta có: \(\widehat{xEy'}=\widehat{x'Ey}\)(hai góc đối đỉnh)
mà \(\widehat{xEy'}=130^0\)
nên \(\widehat{x'Ey}=130^0\)