a) Vẽ đồ thị d của hàm số y=x-3
b) Với giá trị nào của m thì đường thawngrb y=(2-m)x+m+2 cắt đồ thị (d) nói trên tại một điểm có hoành độ bằng 2 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D Q M O
a/ Xét \(\Delta OAC\) có
OA=OC=AC=R =>\(\Delta OAC\) là tg đều
b/ Gọi I là giao của CD với AB
\(AB\perp CD\Rightarrow IC=ID\) (trong đường tròn đường kính vuông góc với dây cung thì chia đôi dây cung) (1)
\(CD\perp AB\) => CD là đường cao của tg OAC => CD là trung tuyến của tg OAC (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến) => IA=IO (2)
Từ (1) và (2) => ACOD là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
\(CD\perp AB\Rightarrow CD\perp AO\)
=> ACOD là hình thoi (Hình bình hành có hai đường chéo vuông góc là hình thoi)
c/
Ta có
\(IA=IO\Rightarrow IO=\frac{OA}{2}=\frac{R}{2}\)
Xét tg vuông COI có \(IC=\sqrt{OC^2-IO^2}=\sqrt{R^2-\frac{R^2}{4}}=\frac{R\sqrt{3}}{2}\)
\(BI=OB+IO=R+\frac{R}{2}=\frac{3R}{2}\)
Xét tg vuông IBC có \(BC=\sqrt{BI^2+IC^2}=\sqrt{\frac{9R^2}{4}+\frac{3R^2}{4}}=R\sqrt{3}\)
d/
Ta có \(\widehat{ACB}=90^o\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{BCQ}=90^o\)
=> C nhìn BQ dưới 1 góc vuông => C thuộc đường tròn đường kính BQ. Đây chính là đường tròn ngoại tiếp tg BCQ
Ta có \(\widehat{BCO}=\widehat{BCA}-\widehat{ACO}=90^o-60^o=30^o\)
\(sd\widehat{CAB}=\frac{1}{2}sd\) cung BC (góc nội tiếp đường tròn) (1)
\(sd\widehat{CBM}=\frac{1}{2}sd\)cung BC (góc giữa tiếp tuyến và dây cung) (2)
Gọi M là tâm đường tròn ngoại tiếp tg BCQ => MQ=MB
Ta có MC = MQ = MB (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg MBC cân tại M \(\Rightarrow\widehat{BCM}=\widehat{CBM}\) (góc ở đáy tg cân) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{BCM}=\widehat{CAB}=60^o\)
\(\Rightarrow\widehat{OCM}=\widehat{BCM}+\widehat{BCO}=60^o+30^o=90^o\Rightarrow OC\perp MC\)=> OC là tiếp tuyến của đường tròn ngoại tiếp tg BCQ
Gọi số sản phẩm mà đội 1, đội 2 phải làm theo kế hoạch lần lượt là \(x,y\left(x,y\inℕ^∗\right)\)
Theo kế hoạch, hai đội phải làm 300 sản phẩm nên ta có phương trình \(x+y=300\)(1)
Thực tế, đội 1 hoàn thành 110% kế hoạch nên số sản phẩm đội 1 làm được trong thực tế là \(110\%x=\frac{110}{100}x=\frac{11}{10}x\)
Còn đội 2 hoàn thành 120% kế hoạch nên số sản phẩm đội 2 làm được trong thực tế là \(120\%y=\frac{120}{100}y=\frac{12}{10}y\)
Do trong thực tế, cả 2 đội làm được 340 sản phẩm nên ta có phương trình \(\frac{11}{10}x+\frac{12}{10}y=340\)\(\Leftrightarrow11x+12y=3400\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}x+y=300\\11x+12y=3400\end{cases}}\Leftrightarrow\hept{\begin{cases}y=300-x\\11x+12\left(300-x\right)=3400\end{cases}}\Leftrightarrow\hept{\begin{cases}11x+3600-12x=3400\\y=300-x\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=200\\y=300-x\end{cases}}\Leftrightarrow\hept{\begin{cases}x=200\\y=100\end{cases}}\)(nhận)
Vậy theo kế hoạch, đội 1 phải làn 200sp còn đội 2 phải làm 100sp.
Điều kiện \(x,y\ge0\)
Ta có \(x-6\sqrt{xy}+13y-12\sqrt{y}+9=0\)
\(\Leftrightarrow x-6\sqrt{xy}+9y+4y-12\sqrt{y}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}.3\sqrt{y}+\left(3\sqrt{y}\right)^2+\left(2\sqrt{y}\right)^2-2.2\sqrt{y}.3+3^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\sqrt{y}\right)^2+\left(2\sqrt{y}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-3\sqrt{y}=0\\2\sqrt{y}-3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=3\sqrt{y}\\2\sqrt{y}=3\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=9y\\\sqrt{y}=\frac{3}{2}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=9.\frac{9}{4}=\frac{81}{4}\\y=\frac{9}{4}\end{cases}}\)(nhận)
Vậy \(x=\frac{81}{4}\)và \(y=\frac{9}{4}\)
Chỉ có phân thức thôi.
P = \(\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}+1-4}{\sqrt{x}+1}=1-\frac{4}{\sqrt{x}+1}\)
Ta có \(\sqrt{x}\ge0\)\(\Leftrightarrow\sqrt{x}+1\ge1\)\(\Leftrightarrow\frac{4}{\sqrt{x}+1}\le4\)\(\Leftrightarrow-\frac{4}{\sqrt{x}+1}\ge-4\)
\(\Leftrightarrow1-\frac{4}{\sqrt{x}+1}\ge-3\)\(\Leftrightarrow P\ge-3\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Leftrightarrow x=0\)
Vậy GTNN của P là -3 khi \(x=0\)
Answer:
1.
\(\hept{\begin{cases}\sqrt{2}x-\sqrt{3}y=-1\\\left(1+\sqrt{3}\right)x-\sqrt{2}y=\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-\sqrt{6}y=\sqrt{2}\\\sqrt{3}\left(1+\sqrt{3}\right)x-\sqrt{6}y=\sqrt{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{3}+1\right)x=\sqrt{6}+\sqrt{2}\\y=\frac{\sqrt{2}x+1}{\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{3}+1\right)x=\sqrt{2}\left(\sqrt{3}+1\right)\\y=\frac{\sqrt{2}x+1}{\sqrt{3}}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\sqrt{2}\\y=\sqrt{3}\end{cases}}\)
\(\hept{\begin{cases}4x-3y=-10\\\frac{x}{2}+\frac{5y}{4}=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3y=-10\\2x+5y=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3y=-10\\4x+10y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}13y=26\\4x+10y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=2\\x=-1\end{cases}}\)
2.
\(\hept{\begin{cases}2x-3=0\\ax+\left(a-1\right)=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\ax+\left(a-1\right)y=\frac{3}{2}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\\left(a-1\right)y=\frac{3}{2}-\frac{3}{2}a\left(1\right)\end{cases}}\)
Hệ có nghiệm duy nhất chỉ khi phương trình (1) có nghiệm duy nhất khi \(a-1\ne0\Leftrightarrow a\ne1\)
3.
7 giờ 12 phút = \(\frac{36}{5}\) giờ
Gọi x và y là thời gian để người thứ nhất và người thứ hai làm một mình xong công việc
Một giờ người thứ nhất làm được \(\frac{1}{x}\) công việc, một giờ người thứ hai làm được \(\frac{1}{y}\) công việc
Có: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{36}\\\frac{6}{x}+\frac{3}{y}=\frac{2}{3}\end{cases}}\)
Đặt \(n=\frac{1}{x};m=\frac{1}{y}\left(u;v>0\right)\)
Có:
\(\hept{\begin{cases}n+m=\frac{5}{36}\\6n+3m=\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}3n+3m=\frac{15}{36}\\6n+3m=\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}3n=\frac{1}{4}\\n+m=\frac{5}{36}\end{cases}}\Leftrightarrow\hept{\begin{cases}n=\frac{1}{12}\\m=\frac{1}{18}\end{cases}}\)
\(\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}=\sqrt{x}+\sqrt{y}+2\)
ĐKXĐ:
\(x+y-4\ge0\rightarrow x+y\ge4\rightarrow x+y\ge4\)
\(x-y+4\ge0\rightarrow x-y\ge-4\rightarrow x-y\ge-4\)
\(-x+y+4\ge0\rightarrow-x+y\ge-4\rightarrow x-y\le4\)
\(x\ge0\)
\(y\ge0\)
Với \(a;b\ge0\) ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\)
\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\rightarrow\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
Đẳng thức xảy ra khi \(a=b\)
Áp dụng bất đẳng thức trên, ta có:
\(\hept{\begin{cases}\sqrt{x+y-4}+\sqrt{x-y+4}\le\sqrt{2\left(x+y-4+x-y+4\right)}=2\sqrt{x}\\\sqrt{x+y-4}+\sqrt{-x+y+4}\le\sqrt{2[\left(x+y-4\right)+\left(-x+y+4\right)]}=2\sqrt{y}\\\sqrt{x-y+4}+\sqrt{-x+y+4}\le\sqrt{2[\left(x-y+4\right)+\left(-x+y+4\right)}=4\end{cases}}\)
\(\rightarrow2\sqrt{x+y-4}+2\sqrt{x-y+4}+2\sqrt{-x+y+4}\le2\sqrt{x}+2\sqrt{y}+4\)
\(\rightarrow\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}\le\sqrt{x}+\sqrt{y}+2\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y-4=x-y+4\\x+y-4=-x+y+4\\x-y+4=-x+y+4\end{cases}}\Leftrightarrow x=y=4\) (Thoả mãn)