K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:
Ta có:
$\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=\frac{-(x-y)}{xy}=\frac{-xy}{xy}=-1$

11 tháng 9 2023

Gọi 120 số 1 hoặc -1 đó lần lượt là a1; a2; a3; ...; a120. Theo đề ta có:

a1.a2.a3 = -1; a2.a3.a4 = -1; a3.a4.a5 = -1; ...;

a118.a119.a120 = -1; a119.a120.a= -1; a120.a1.a= -1.

\(a_1=a_4=\dfrac{1}{a_2\cdot a_3}\)\(a_2=a_5=\dfrac{1}{a_3\cdot a_4}\)\(a_3=a_6=\dfrac{1}{a_4\cdot a_5}\); ...;

\(a_{118}=a_1=\dfrac{1}{a_{119}\cdot a_{120}}\)\(a_{119}=a_2=\dfrac{1}{a_{120}\cdot a_1}\)\(a_{120}=a_3=\dfrac{1}{a_1\cdot a_2}\).

Từ đây ta suy ra \(a_1=a_4=a_7=...=a_{118}\)\(a_2=a_5=a_8=...=a_{119}\)\(a_3=a_6=a_9=...=a_{120}\). (1)

Do đó \(a_1=\dfrac{1}{a_2\cdot a_3}\)\(a_2=\dfrac{1}{a_3\cdot a_1}\)\(a_3=\dfrac{1}{a_1\cdot a_2}\). Mà a1.a2.a3 = -1 và các số a1; a2; a3; ...; a120 chỉ có thể là 1 hoặc -1 nên chỉ có một nghiệm duy nhất \(a_1=a_2=a_3=-1\). (2)

Từ (1) và (2) suy ra có 120 số -1, nên tổng của 120 số đó là \(120\cdot\left(-1\right)=-120\).

AH
Akai Haruma
Giáo viên
10 tháng 9 2023

9 tháng 9 2023

a) \(\dfrac{35}{101}=\dfrac{105}{303}< \dfrac{189}{303}\Rightarrow\dfrac{35}{101}< \dfrac{189}{303}\)

b) \(\dfrac{11}{13}< \dfrac{11+2}{13+2}=\dfrac{13}{15}< \dfrac{14}{15}\Rightarrow\dfrac{11}{-13}>\dfrac{-14}{15}\)

c) \(-\dfrac{32}{19}< 0< \dfrac{23}{32}\Rightarrow-\dfrac{32}{19}< \dfrac{23}{32}\)

d) \(1,561< 1,5661\Rightarrow-1,561>-1,5661\)

e) \(0,1=\dfrac{1}{10}=\dfrac{40}{400}< \dfrac{40+56}{400+56}=\dfrac{96}{456}< \dfrac{176}{456}\Rightarrow0,1< \dfrac{176}{456}\)

g) \(0,3=\dfrac{3}{10}=\dfrac{9}{30}< \dfrac{9+8}{30+8}=\dfrac{17}{38}< \dfrac{19}{38}\Rightarrow0,3< \dfrac{19}{38}\Rightarrow-0,3>\dfrac{-19}{38}\)

9 tháng 9 2023

a) Do tam giác AEB vuông cân tại A nên \(\left\{{}\begin{matrix}\widehat{EAB}=90^o\\AE=AB\end{matrix}\right.\)

Ta thấy \(\widehat{MEA}=\widehat{BAH}\) vì chúng cùng phụ với \(\widehat{EAM}\)

Xét 2 tam giác HAB vuông tại H và MEA vuông tại M, ta có:

\(AE=AB\left(cmt\right),\widehat{MEA}=\widehat{BAH}\left(cmt\right)\)

\(\Rightarrow\Delta HAB=\Delta MEA\left(ch-gn\right)\) \(\Rightarrow AH=ME\)     (1)

Tương tự, ta cũng có \(\Delta HAC=\Delta NFA\Rightarrow HC=AN\)     (2)

Từ (1) và (2) suy ra \(EM+HC=AH+AN\) hay \(EM+HC=HN\) (đpcm)

b) Từ \(\Delta HAC=\Delta NFA\Rightarrow AH=NF\)

Từ đó suy ra \(ME=NF\left(=AH\right)\)

Xét tam giác MNE và NMF, ta có:

\(ME=NF\left(cmt\right),\widehat{EMN}=\widehat{FNM}\left(=90^o\right)\), MN là cạnh chung.

\(\Rightarrow\Delta MNE=\Delta NMF\left(c.g.c\right)\)

\(\Rightarrow\widehat{ENM}=\widehat{FMN}\) \(\Rightarrow\) EN//FM (2 góc so le trong bằng nhau)

Ta có đpcm.

9 tháng 9 2023

mình đang cần gâps

 

9 tháng 9 2023

6255 và 1257

a, 6255 = (54)5 = 520

1257 = (53)7 = 521

Vì 520 < 521 nên 6255 < 1257

b,  32n = (32)n = 9n

     23n = (23)n = 8n

     9n > 8n ( nếu n > 0)

      9n = 8n (nếu n = 0)

Vậy nếu n = 0 thì 23n = 32n
      nếu n > 0 thì 32n > 23n

9 tháng 9 2023

Cảm ơn em đã báo cáo bài học. Cô đã duyệt toàn bộ nội dung bài giảng nhé. Bài giảng chuẩn và không có lỗi.

loading...

29 tháng 12

lỗi đâu mà lỗi 

có lẽ cậu học ko đc tốt(BPTT nói giảm nói tránh)hehe

9 tháng 9 2023

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb

8 tháng 9 2023

Gọi `3` lớp `7A,7B,7C` trồng cây lần lượt là `a,b,c` \(\left(a,b,c\in N\right)\) 

Theo bài ra ta có : \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)  và `a+b+c=60` 

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{60}{12}=5\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=5\Rightarrow a=5\cdot3=15\\\dfrac{b}{4}=5\Rightarrow b=5\cdot4=20\\\dfrac{c}{5}=5\Rightarrow c=5\cdot5=25\end{matrix}\right.\)

Vậy ...

 

8 tháng 9 2023

Gọi \(x;y;z\left(x;y;z>0\right)\) lần lượt là số cây lớp 7A; 7B; 7C trồng

Theo đề bài ta có :

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y+z}{3+4+5}=\dfrac{60}{12}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.5=15\\y=4.5=20\\z=5.5=25\end{matrix}\right.\)

Vậy lớp 7A trồng được : 15 cây

             7B trồng được : 20 cây

             7C trồng được : 25 cây

8 tháng 9 2023

a) \(x=\dfrac{m-2023}{-2024}\)

Để \(x>0\)

\(\Leftrightarrow\dfrac{m-2023}{-2024}>0\)

\(\Leftrightarrow m-2023< 0\)

\(\Leftrightarrow m< 2023\)

b) Để \(x< 0\)

\(\Leftrightarrow\dfrac{m-2023}{-2024}< 0\)

\(\Leftrightarrow m-2023>0\)

\(\Leftrightarrow m>2023\)

c) Để \(x\) là số không dương cũng không âm

\(\Leftrightarrow\dfrac{m-2023}{-2024}=0\)

\(\Leftrightarrow m-2023=0\)

\(\Leftrightarrow m=2023\)

8 tháng 9 2023

a) Để x là số dương khi:

\(m-2023< 0\)                     \(\left(-2024< 0\right)\)

\(m< 0+2023\)

\(=>m< 2023\)

b) Để x là số âm khi:

\(m-2023>0\)                  \(\left(-2024< 0\right)\)

\(=>m>2023\)

c) Để x không là số dương cũng không là số âm khi:

\(m-2023=0\)

\(=>m=2023\)