nếu hai đội cùng làm một công việc thì trong 18 ngày xong công việc. Nếu đội 1 làm trong 6 ngày , sau đó đội 1 nghỉ , đội 2 làm tiếp trong 8 ngày thì được 40% công việc. Hỏi mỗi đội làm một mình trong bao lâu xong công việc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đường cao BD của tam giác ABC \(\left(D\in AC\right)\)
Khi đó \(AD=AB.cosA=c.cosA\)
\(\Rightarrow CD=AC-AD=b-c.cosA\)
Mặt khác, \(BD=BA.sinA=c\sqrt{1-cos^2A}\)
Tam giác BCD vuông tại D nên:
\(a^2=BC^2=DB^2+DC^2\)
\(=\left(b-c.cosA\right)^2+\left(c\sqrt{1-cos^2A}\right)^2\)
\(=b^2-2bc.cosA+c^2.cos^2A+c^2\left(1-cos^2A\right)\)
\(=b^2+c^2-2bc.cosA\)
Vậy đẳng thức được chứng minh.
Kẻ đường cao AH của tam giác ABC \(\left(H\in BC\right)\). Gọi F là trung điểm của BC.
Khi đó tam giác GBC vuông tại G có trung tuyến GF nên \(GF=\dfrac{1}{2}BC\)
Lại có G là trọng tâm tam giác ABC \(\Rightarrow GF=\dfrac{1}{3}AF\)
\(\Rightarrow\dfrac{1}{2}BC=\dfrac{1}{3}AF\)
\(\Rightarrow\dfrac{AF}{BC}=\dfrac{3}{2}\)
\(\Rightarrow BC=\dfrac{2}{3}AF\) (1)
Mặt khác, tam giác ABH vuông tại H \(\Rightarrow cotB=\dfrac{BH}{AH}\)
Tương tự, \(cotC=\dfrac{CH}{AH}\)
\(\Rightarrow cotB+cotC=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}=\dfrac{\dfrac{2}{3}AF}{AH}\) \(\ge\dfrac{\dfrac{2}{3}AH}{AH}=\dfrac{2}{3}\)
(vì AH, AF là đường vuông góc và đường xiên kẻ từ A đến BC)
Dấu "=" xảy ra \(\Leftrightarrow AH=AF\), nghĩa là đường cao bằng đường trung tuyến ứng với đỉnh A \(\Leftrightarrow\Delta ABC\) cân tại A.
Ta có đpcm.
ĐK: \(a\ne-2\); \(a\in\mathbb{Z}\)
\(P=\dfrac{a-1}{a+2}=\dfrac{a+2-3}{a+2}=1-\dfrac{3}{a+2}\)
Để \(P\in\mathbb{Z}\) thì \(\dfrac{3}{a+2}\in\mathbb{Z}\)
\(\Rightarrow3⋮a+2\)
\(\Rightarrow a+2\inƯ\left(3\right)\)
\(\Rightarrow a+2\in\left\{1;3;-1;-3\right\}\)
\(\Rightarrow a\in\left\{-1;1;-3;-5\right\}\) (tmđk)
Olm chào em, em nên viết bằng công thức toán học nơi có biểu tượng \(\Sigma\) góc trái màn hình em nhé.
Bài 7:
a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)
\(A=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}\right):\dfrac{2x}{5x-5}\)
\(=\dfrac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{5x-5}{2x}\)
\(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{5\left(x-1\right)}{2x}\)
\(=\dfrac{4x}{\left(x+1\right)}\cdot\dfrac{5}{2x}=\dfrac{10}{x+1}\)
b: Thay x=3 vào A, ta được:
\(A=\dfrac{10}{3+1}=\dfrac{10}{4}=\dfrac{5}{2}\)
Vì x=-1 không thỏa mãn ĐKXĐ
nên Khi x=-1 thì A không có giá trị
c: Đặt A=2
=>\(\dfrac{10}{x+1}=2\)
=>x+1=5
=>x=4(nhận)
Bài 6:
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(A=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
c: Đặt A=-1/2
=>\(\dfrac{1}{2\left(x+1\right)}=\dfrac{-1}{2}\)
=>x+1=-1
=>x=-2(nhận)
\(\dfrac{3}{7}x-1=\dfrac{1}{7}x\left(3x-7\right)\)
⇔ \(\dfrac{3}{7}x-\dfrac{7}{7}=\dfrac{3}{7}x^2-\dfrac{7}{7}x\)
⇔ \(\dfrac{3}{7}x-\dfrac{7}{7}-\dfrac{3}{7}x^2+\dfrac{7}{7}x=0\)
⇔ \(\dfrac{3}{7}x\left(1-x\right)-\dfrac{7}{7}\left(1-x\right)=0\)
⇔ \(\left(1-x\right)\left(\dfrac{3}{7}x-\dfrac{7}{7}\right)=0\)
⇔ \(\left[{}\begin{matrix}1-x=0\\\dfrac{3}{7}x-\dfrac{7}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy pt có 2 nghiệm pt : \(x=1;x=\dfrac{7}{3}\)
a) Ta có MH//AC \(\left(\perp AB\right)\) nên \(\Delta BMH\sim\Delta BAC\)
\(\Rightarrow\dfrac{BM}{BA}=\dfrac{MH}{AC}\) \(\Rightarrow BM.AC=BA.MH\)
Tam giác ABH vuông tại H có đường cao HM
\(BA.MH=HB.HA\)
Tương tự, ta có: \(CN.AB=HC.HA\)
Cộng theo vế 2 hệ thức trên, ta được:
\(BA.MH+CN.AB=HB.HA+HC.HA=HA\left(HB+HC\right)=AH.BC\)
Ta có đpcm.
b) Tam giác ABH vuông tại H có đường cao HM nên \(AM.BM=MH^2\).
Tương tự, ta có \(AN.CN=HN^2\)
Do đó \(VT=AM.BM+AN.CN=MH^2+HN^2\)
Dễ thấy tứ giác AMHN là hình chữ nhật nên \(MH^2+HN^2=MN^2=AH^2\)
Tam giác ABC vuông tại A có đường cao AH nên \(AH^2=BH.CH\)
Từ đó suy ra \(VT=BH.CH=VP\)
Vậy đẳng thức được chứng minh.
c) Xét hệ trục tọa độ Axy với A là gốc tọa độ, \(Ax\equiv AC,Ay\equiv AB\)
Khi đó đặt \(B\left(0;b\right)\), \(C\left(c;0\right)\)
Khi đó phương trình đường thẳng \(BC:y=-\dfrac{b}{c}x+b\)
\(\Rightarrow\) Phương trình đường thẳng \(AH:y=\dfrac{c}{b}x\)
Khi đó hoành độ của điểm H chính là nghiệm của pt hoành độ giao điểm của AH và BC: \(\dfrac{c}{b}x_0=-\dfrac{b}{c}x_0+b\)
\(\Leftrightarrow\left(\dfrac{c}{b}+\dfrac{b}{c}\right)x_0=b\)
\(\Leftrightarrow\left(\dfrac{c^2+b^2}{bc}\right)x_0=b\)
\(\Leftrightarrow x_0=\dfrac{cb^2}{b^2+c^2}\)
\(\Rightarrow y_0=\dfrac{c}{b}x_0=\dfrac{c}{b}.\dfrac{cb^2}{b^2+c^2}=\dfrac{bc^2}{b^2+c^2}\)
Vậy \(H\left(\dfrac{cb^2}{b^2+c^2},\dfrac{bc^2}{b^2+c^2}\right)\)
Vì M là hình chiếu của H lên trục Oy \(\Rightarrow M\left(0,\dfrac{bc^2}{b^2+c^2}\right)\)
Tương tự \(\Rightarrow N\left(\dfrac{cb^2}{b^2+c^2},0\right)\)
Khi đó \(BM=BA-MA=b-\dfrac{bc^2}{b^2+c^2}=\dfrac{b^3+bc^2-bc^2}{b^2+c^2}=\dfrac{b^3}{b^2+c^2}\)
\(CN=CA-NA=c-\dfrac{cb^2}{b^2+c^2}=\dfrac{cb^2+c^3-cb^2}{b^2+c^2}=\dfrac{c^3}{b^2+c^2}\)
\(\Rightarrow\dfrac{BM}{CN}=\dfrac{\dfrac{b^3}{b^2+c^2}}{\dfrac{c^3}{b^2+c^2}}=\dfrac{b^3}{c^3}=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{AB}{AC}\right)^3\)
\(\Rightarrow\sqrt[3]{\dfrac{MB}{NC}}=\dfrac{AB}{AC}\) (đpcm)
Gọi thời gian làm riêng để hoàn thành công việc của đội 1 và 2 lần lượt là a, b (ngày)
Điều kiện : a; b > 0
Theo đề bài ta có:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{18}\\\dfrac{6}{a}+\dfrac{8}{b}=40\%=\dfrac{2}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{45}\\\dfrac{1}{b}=\dfrac{1}{30}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=45\\b=30\end{matrix}\right.\) (thỏa mãn điều kiện)
Vậy...