Một chiếc tivi hình chữ nhật màn hình phẳng 49 inch (đường chéo tivi dài 49 inch). Tính độ dài đường chéo của tivi này theo đơn vị cm với độ chính xác d=0,05? Biết 1 inch xấp sỉ 2,54 cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vào trang cá nhân mình phần trả lời câu hỏi của bạn để xem hình nha.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có: \(VT=\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7bk^2+3bkb}{11bk^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)
\(VP=\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7dk^2+3dkd}{11dk^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\Rightarrow VT=VP\)
Vậy \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)
Thực hiện phép chia \(a\left(x\right)=x^3+2x^2+3x-1\) cho \(b\left(x\right)=x-2\), ta được:
\(a\left(x\right)=\left(x-2\right)\cdot Q\left(x\right)+r\)
\(\Rightarrow a\left(2\right)=\left(2-2\right)\cdot Q\left(2\right)+r=r\)
\(\Rightarrow r=2^3+2\cdot2^2+3\cdot2-1=21\)
Vậy số dư phép chia \(a\left(x\right)\) cho \(b\left(x\right)\) là \(21\).
Áp dụng tính chất dãy tỉ số bằng nhau:
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
\(\Rightarrow\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)
Độ dài đường chéo của ti vi là:
2,54 x 49 = 124,46 cm
Làm tròn độ dài đường chéo với độ chính xác d = 0,05 tức là làm tròn tới hàng phần mười.
Xét 124,46 ta có 6 > 5 nên ta làm tròn lên
Vậy 124,46 cm làm tròn với độ chính xác d = 0,05 thì độ dài đường chéo ti vi là 124,5 cm
Kết luận: Khi làm tròn với độ chính xác d = 0,05 thì độ dài đường chéo ti vi 49 inch là 124,5 cm
No body