K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2022

A B C O H D E

a/

Xét tg vuông BHD và tg vuông OBD có

\(\widehat{ODB}\) chung

=> tg BHD đồng dạng với tg OBD

\(\Rightarrow\dfrac{BD}{DO}=\dfrac{DH}{BD}\Rightarrow BD^2=DH.DO\) (đpcm)

b/

Xét tg AEB có

\(\widehat{AEB}=90^o\) (góc nội tiếp chắn nửa đường tròn) (đpcm)

Ta có \(BD^2=HD.DO\) (cmt) (1)

Xét tg vuông BED và tg vuông ABD có

\(\widehat{ADB}\) chung

=> tg BED đồng dạng với tg ABD

\(\Rightarrow\dfrac{BD}{DA}=\dfrac{DE}{BD}\Rightarrow BD^2=DE.DA\) (2)

Từ (1) và (2) => HD.DO = DE.DA (đpcm)

c/

Xét tg DBC có

DB=DC (Hai tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn)

=> tg DBC cân tại D 

Ta có \(DH\perp BC\) 

=> \(\widehat{ODC}=\widehat{ODB}\) (trong tg cân đường cao xuất phát từ đỉnh đồng thời là đường phân giác)

Xét tg OCD và tg OBD có

DC=DB (cmt)

OD chung

\(\widehat{ODC}=\widehat{ODB}\) (cmt)

=> tg OCD = tg OBD (c.g.c)

\(\Rightarrow\widehat{OCD}=\widehat{OBD}=90^o\) => DC là tiếp tuyến của (O) (đpcm)

ta có

\(sđ\widehat{DCE}=\dfrac{1}{2}sđ\) cung CE (góc nt đường tròn)

\(sđ\widehat{CAD}=\dfrac{1}{2}sđ\) cung CE (góc nt đường tròn)

\(\Rightarrow\widehat{DCE}=\widehat{CAD}\) (1)

Xét tg ECD có \(\widehat{DEC}=180^o-\widehat{DCE}-\widehat{ADC}\) (2)

Xét tg DAC có \(\widehat{DCA}=180^o-\widehat{CAD}-\widehat{ADC}\) (3)

Từ (1) (2) (3) \(\Rightarrow\widehat{DEC}=\widehat{DCA}\) (đpcm)

 

28 tháng 11 2022

`x-2sqrt{x-4}=4`              `đk : x>=4`

`<=> 2sqrt{x-4} = x-4`

`<=> 2*(x-4)=(x-4)^2`

`<=> 2x-8 = x^2 -8x +16`

`<=>2x-8-x^2+8x-16 =0`

`<=> -x^2 +10x -24 =0`

`<=> x^2 -10x +25 -1 =0`

`<=> (x-5)^2 =1`

`=> [(x-5=1),(x-5=-1):} =>[(x=6(t//m)),(x=4(t//m)):}`

Vậy `S={6;4}`

29 tháng 11 2022

Đặt \(\left\{{}\begin{matrix}a=3x^2-4x+1\\b=3x^2+2x+1\end{matrix}\right.\left(a,b\ne0\right)\Rightarrow x=\dfrac{a-b}{6}\).

Phương trình đã cho trở thành

\(\dfrac{2}{a}+\dfrac{13}{b}=\dfrac{36}{a-b}\\ \overset{\text{nhân chéo và rút gọn}}{\Rightarrow}2b^2-25ab-13a^2=0\\\Leftrightarrow\left(b-13a\right) \left(2b+a\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}b=13a\\a=-2b\end{matrix}\right..\)

Đến đây bạn thay ngược $x$ trở lại và giải tiếp nhé.

 

 

29 tháng 11 2022

Bạn nhân chéo rồi rút gọn thì được:

\(x^4-3x^3+3x+1=0\\ \Leftrightarrow(x^2-2x-1)(x^2-x-1)=0\)

Bạn tự giải tiếp nhé.

1 tháng 12 2022

GDgfdsgdfggdffdv

29 tháng 11 2022

https://olm.vn/cau-hoi/cmr-sqrt2sqrt3sqrt4sqrtsqrt2000-3.81719160658

Câu hỏi đã có người trả lời ở đây bạn nhé

DD
28 tháng 11 2022

\(\sqrt{a^2-b^2}+\sqrt{2ab-b^2}>\sqrt{a^2-b^2}+\sqrt{2b^2-b^2}\)

\(=\sqrt{a^2-b^2}+\sqrt{b^2}>\sqrt{a^2-b^2+b^2}=\sqrt{a^2}=a\).

28 tháng 11 2022

\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{2}-1}{\left(1+\sqrt{2}\right).\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{2}+\sqrt{3}\right).\left(\sqrt{3}-2\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{99}+\sqrt{100}\right)\left(\sqrt{100}-\sqrt{99}\right)}\)\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=10-1=9\)

28 tháng 11 2022

Ta có:\(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}^2-\sqrt{n}^2}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Do đó:

\(\dfrac{1}{1+\sqrt{2}}=\sqrt{2}-1;\dfrac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2};...;\dfrac{1}{\sqrt{99}-\sqrt{100}}=\sqrt{100}-\sqrt{99}\)

Đến đây bạn tự giải tiếp nhé.