Cho đường tròn (O) với BC là đường kính. Lấy A thuộc (O). Tiếp tuyến tại A và B của đường tròn (O) cắt nhau ở P. Kẻ đường cao AH ⊥ BC, H ∈ BC. Chứng minh CP đi qua trung điểm AH.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên 2 chữ số \(\overline{xy}=10x+y\)
Hai lần chữ số hàng chục hơn chữ số hàng đơn vị : \(2x-y=1\left(1\right)\)
Khi viết ngược lại :
\(10y+x-\left(10x+y\right)=27\)
\(\Rightarrow10y+x-10x-y=27\)
\(\Rightarrow-9x+9y=27\left(2\right)\)
\(\left(1\right),\left(2\right)\) ta có hệ phương trình
\(\left\{{}\begin{matrix}2x-y=1\\-9x+9y=27\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}18x-9y=9\\-18x+18y=54\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9y=63\\2x-y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=7\\x=\dfrac{y+1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=7\end{matrix}\right.\)
Vậy số tự nhiên đó là 47
Ta nhận thấy \(AH^2=\left(2\sqrt{5}\right)^2=20\) và \(BH.CH=4.5=20\) và \(AH\perp BC\) tại H nên tam giác ABC sẽ là tam giác vuông tại A. chỉ cần làm như sau:
Vẽ đường thẳng d bất kì. Trên đó lấy 3 điểm B, C, H sao cho H nằm giữa B và C thỏa mãn \(BH=4cm,CH=5cm\)
Sau đó, ta chỉ cần dựng đường thẳng qua H vuông góc với BC cắt đường tròn đường kính BC tại A là xong.
Sau đó ta xóa đi các chi tiết thừa và được hình vẽ đúng theo ycbt.
Lê Song Phương, em ơi, em vẽ hình đẹp quá, thế điểm I; K đối xứng với H qua AB và AC của cô đâu rồi nhỉ?
Bài này chỉ cần vẽ hình,nhưng cô tìm mãi vẫn chưa thấy I và K đâu em ha!
a) Xét tam giác ACB và ADC, có \(\widehat{A}\) chung và \(\widehat{ACB}=\widehat{ADC}\left(gt\right)\), suy ra đpcm.
b) Từ câu a) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{AC}{AD}\) \(\Rightarrow AC^2=AB.AD\)
Kẻ phân giác BE của tam giác ABC. Vì \(\widehat{B}=2\widehat{C}\) nên \(\widehat{ABE}=\widehat{ADC}\) hay BE//CD. Mặt khác, \(\dfrac{EA}{EC}=\dfrac{BA}{BC}=\dfrac{4}{5}\) nên suy ra \(\dfrac{BA}{BD}=\dfrac{4}{5}\Leftrightarrow\dfrac{4}{BD}=\dfrac{4}{5}\Leftrightarrow BD=5\), suy ra \(AD=AB+BD=4+5=9\).
\(\Rightarrow AC^2=AB.AD=4.9=36\) \(\Rightarrow AC=6\).
Vậy \(AC=6\)
Dạ thưa cô, cái này em áp dụng tính chất đường phân giác trong tam giác ạ. Cái này lớp 9 được dùng luôn không cần chứng minh ạ.
Đặt y = 0, ta có:
-5x - 1 = 0
Giải phương trình trên, ta có:
-5x = 1
x = -1/5
Vậy, đồ thị hàm số y = -5x - 1 đi qua điểm (-1/5, 0).
B C P A H I O K x
Gọi I là giao của CP với AH; K là giao của CA với BP
\(sđ\widehat{CAx}=\dfrac{1}{2}sđcungAC\) (góc giữa tiếp tuyến và dây cung) (1)
\(sđ\widehat{BKC}=\dfrac{1}{2}\left(sđcungBC-sđcungAB\right)\) (góc có đỉnh ở ngoài hình tròn)
Ta có
\(sđcungBC=sđcungBAC\)
\(\Rightarrow sđcungBC-sđcungAB=sđcungBAC-sđcungAB=sđcungAC\)
\(\Rightarrow sđ\widehat{BKC}=\dfrac{1}{2}sđcungAC\) (2)
\(\widehat{CAx}=\widehat{KAP}\) (góc đối đỉnh) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{KAP}=\widehat{BKC}\) => tg APK cân tại P
=> PA=PK
Mà PA=PB (Hai tiếp tuyến cùng xp từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau)
=> PK=PB
Ta có
\(BK\perp BC;AH\perp BC\) => AH//BK
Xét tg BCK có
\(\dfrac{IA}{PK}=\dfrac{IH}{PB}\) mà PK=PB (cmt) => IA=IH => I là trung điểm của AH