K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2023

Bạn thử xem lại đề xem, nó không song song đâu.

16 tháng 8 2023

\(\dfrac{1}{5}\sqrt[]{25x+50}-5\sqrt[]{x+2}+\sqrt[]{9x+18}+9=0\)

\(\Leftrightarrow\dfrac{1}{5}\sqrt[]{25\left(x+2\right)}-5\sqrt[]{x+2}+\sqrt[]{9\left(x+2\right)}+9=0\)

\(\Leftrightarrow\dfrac{1}{5}.5\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}-5\sqrt[]{x+2}+3\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}\left(1-5+3\right)+9=0\)

\(\Leftrightarrow-\sqrt[]{x+2}+9=0\)

\(\Leftrightarrow\sqrt[]{x+2}=9\)

\(\Leftrightarrow x+2=81\)

\(\Leftrightarrow x=79\)

16 tháng 8 2023

\(110\%x+115\%y=400\\ \Rightarrow1.1x+1.15y=400\\ x+y=360\\ \Leftrightarrow1.1\left(x+y\right)=360\cdot1.1=396\\ \Rightarrow\left(1.1x+1.15y\right)-1.1\left(x+y\right)=1.1x+1.15y-1.1x-1.1y=0.05y=4\\ \Leftrightarrow y=\dfrac{4}{0.05}=80\\ \Rightarrow x=360-80=280.\)

16 tháng 8 2023

\(y=\left(m+4\right)x+m-1\left(1\right)\)

a) Hàm số (1) đồng biến

\(\Leftrightarrow m+4\) lớn hơn \(0\)

\(\Leftrightarrow m\) lớn hơn \(-4\)

b) Hàm số (1) nghịch biến

\(\Leftrightarrow m+4\) nhỏ hơn \(0\)

\(\Leftrightarrow m\) nhỏ hơn \(-4\)

(Điện thoại tôi không đánh dấu nhỏ lớn được)

16 tháng 8 2023

   (\(\sqrt{5}\) - 1)\(\sqrt{6+2\sqrt{5}}\) 

=  (\(\sqrt{5}\) - 1).\(\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}\)

= (\(\sqrt{5}\) - 1).\(\sqrt{\left(\sqrt{5}+1\right)^2}\)

= (\(\sqrt{5}\) - 1).(\(\sqrt{5}\) +1)

= 5 - 1

= 4

15 tháng 8 2023

1) ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\\\sqrt{x}+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\\\sqrt{x}\ne-3\left(LĐ\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có : \(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}.\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)

2) Với \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

Do đó : \(P=\dfrac{\sqrt{3}-1+3}{\sqrt{3}-1+1}\)

\(P=\dfrac{\sqrt{3}+2}{\sqrt{3}}=\dfrac{3+2\sqrt{3}}{3}\)

3) Xét hiệu của : P với 3 

\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-3\)

\(=\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\)

Ta thấy : \(\sqrt{x}+1\ge1;-2\sqrt{x}\le0\)

\(\Rightarrow\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\le0\)

\(\Rightarrow P\le3\)

Dấu bằng xảy ra : \(\Leftrightarrow x=0\). Thế lại ta thấy ktm nên P<3

15 tháng 8 2023

Nè.Anh có kết bạn với em hông?

15 tháng 8 2023

Rồi bạn Nguyễn Thị Thanh Mai