Cho △ABC vuông tại A (AB<AC) gọi K là trung điểm của BC, KN vuông góc với AC tại N, kẻ KM vuông góc AB tại M.
a) AMKN là hình gì
b) D là điểm đối xứng với K qua N E là điểm đối xứng với K qua M. Chứng minh D,E,A thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+2y^2=5xy\)
\(\Leftrightarrow3x^2+2y^2-5xy=0\)
\(\Leftrightarrow2\left(x^2-2xy+y^2\right)+x^2-xy=0\)
\(\Leftrightarrow2\left(x-y\right)^2+x\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[2\left(x-y\right)+x\right]=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-2y\right)=0\)
\(\Leftrightarrow3x-2y=0\Leftrightarrow x=\dfrac{2y}{3}\) Thay vào S
\(\Rightarrow S=\dfrac{y+\dfrac{4y}{3}}{y-\dfrac{4y}{3}}=-7\)
Bạn nên gõ hẳn đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu rõ đề của bạn hơn.
Lời giải:
a. Để $(d)$ đi qua gốc tọa độ $O(0;0)$ thì:
$y_O=(m-1)x_O+2m-1$
$\Leftrightarrow 0=(m-1).0+2m-1\Leftrightarrow m=\frac{1}{2}$
b.
$(d)$ cắt trục tung tại điểm có tung độ $3$, tức là $(d)$ đi qua $(0;3)$
Điều này xảy ra khi $3=(m-1).0+2m-1\Leftrightarrow 2m-1=3$
$\Leftrightarrow m=2$
c.
$(d)$ cắt trục hoành tại điểm có hoành độ $-1$, tức là $(d)$ đi qua $(-1;0)$
Điều này xảy ra khi $0=(m-1)(-1)+2m-1$
$\Leftrightarrow 0=2m-1-(m-1)=m$
$\Leftrightarrow m=0$
Lời giải:
a. Tứ giác $AMKN$ có 3 góc vuông $\widehat{A}=\widehat{M}=\widehat{N}=90^0$ nên $AMKN$ là hình chữ nhật.
b.
Xét tam giác $AEM$ và $AKM$ có:
$MA$ chung
$\widehat{AME}=\widehat{AMK}=90^0$
$EM=KM$ (do $E,K$ đối xứng nhau qua $M$)
$\Rightarrow \triangle AEM=\triangle AKM$ (c.g.c)
$\Rightarrow \widehat{EAM}=\widehat{KAM}(1)$
Tương tự:
$\triangle AKN=\triangle ADN$ (c.g.c)
$\Rightarrow \widehat{DAN}=\widehat{KAN}(2)$
Từ $(1); (2)\Rightarrow \widehat{EAM}+\widehat{MAN}+\widehat{DAN}=\widehat{KAM}+\widehat{MAN}+\widehat{KAN}=2\widehat{MAN}=2.90^0=180^0$
Hay $\widehat{EAD}=180^0$
$\Rightarrow E, A, D$ thẳng hàng.
Hình vẽ: