cho đại lượng y với đại lượng x theo hệ số tỉ lệ k = -2 khi y = 12 thì x bằng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔCMD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔAMB=ΔCMD
b: ΔAMB=ΔCMD
=>AB=CD
mà AB=AC
nên CD=CA
=>ΔCDA cân tại C
c: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Xét ΔABC có
AH,BM là các đường trung tuyến
AH cắt BM tại I
Do đó: I là trọng tâm của ΔABC
Xét ΔIBC có
IH là đường cao
IH là đường trung tuyến
Do đó: ΔIBC cân tại I
=>IB=IC
Xét ΔABC có
BM là đường trung tuyến
I là trọng tâm
Do đó: \(BI=\dfrac{2}{3}BM=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
=>BD=3BI
Xét ΔABC có
I là trọng tâm
CI cắt AB tại N
Do đó: N là trung điểm của AB; IN=1/2IC
=>\(IN=\dfrac{1}{2}IB\)
\(\dfrac{IN}{BD}=\dfrac{BI}{2}:3BI=\dfrac{BI}{2\cdot3BI}=\dfrac{1}{6}\)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>AB=BE
Ta đặt:
\(A=\dfrac{2023}{1}+\dfrac{2022}{2}+\dfrac{2021}{3}+...+\dfrac{1}{2023}\)
\(A=1+\dfrac{2022}{2}+1+\dfrac{2021}{3}+1+...+\dfrac{1}{2023}+1\)
\(A=\dfrac{2024}{2024}+\dfrac{2024}{2}+\dfrac{2024}{3}+....+\dfrac{2024}{2023}\)
\(A=2024\times\left(\dfrac{1}{2024}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2023}\right)\)
\(\Rightarrow\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\dfrac{2023}{1}+\dfrac{2022}{2}+...+\dfrac{1}{2023}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{2024\times\left(\dfrac{1}{2024}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2023}\right)}=\dfrac{1}{2024}\)
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\dfrac{2023}{1}+\dfrac{2022}{2}+...+\dfrac{1}{2023}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\left(1+\dfrac{2022}{2}\right)+\left(1+\dfrac{2021}{3}\right)+...+\left(1+\dfrac{1}{2023}\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{\dfrac{2024}{2}+\dfrac{2024}{3}+...+\dfrac{2024}{2023}+\dfrac{2024}{2024}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}}{2024\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2024}\right)}=\dfrac{1}{2024}\)
Do \(\left\{{}\begin{matrix}x^4\ge0\\x^2\ge0\end{matrix}\right.\) ; \(\forall x\)
\(\Rightarrow3x^4+2x^2\ge0\) ; \(\forall x\)
\(\Rightarrow3x^4+2x^2+\dfrac{5}{3}>0\) ; \(\forall x\)
\(\Rightarrow\) Đa thức \(Q\left(x\right)\) vô nghiệm
Sửa đề: ΔABC vuông tại A, cắt AC tại M
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
BA=BD
Do đó: ΔBAM=ΔBDM
b: ΔBAM=ΔBDM
=>MA=MD
Xét ΔMAN vuông tại A và ΔMDC vuông tại D có
MA=MD
\(\widehat{AMN}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAN=ΔMDC
=>MN=MC
=>ΔMNC cân tại M
c: Ta có: ΔMAN=ΔMDC
=>AN=DC
Ta có: BA+AN=BN
BD+DC=BC
mà BA=BD và AN=DC
nên BN=BC
=>B nằm trên đường trung trực của NC(1)
Ta có: MN=MC
=>M nằm trên đường trung trực của NC(2)
Ta có: IN=IC
=>I nằm trên đường trung trực của NC(3)
Từ (1),(2),(3) suy ra B,M,I thẳng hàng
Hai đại lượng này tỉ lệ thuận hay nghịch vậy em?