em chưa hiểu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{3}-\left(-\dfrac{1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(-\dfrac{5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\\ =\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\\ =\left(\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{1}{12}\right)+\left(\dfrac{3}{5}+\dfrac{5}{9}-\dfrac{7}{45}\right)+\dfrac{1}{35}\\ =\left(\dfrac{8}{12}+\dfrac{3}{12}+\dfrac{1}{12}\right)+\left(\dfrac{27}{45}+\dfrac{25}{45}-\dfrac{7}{45}\right)+\dfrac{1}{35}\\ =\dfrac{12}{12}+\dfrac{45}{45}+\dfrac{1}{35}\\ =1+1+\dfrac{1}{35}\\ =2+\dfrac{1}{35}\\ =\dfrac{70}{35}+\dfrac{1}{35}=\dfrac{71}{35}\)
\(\dfrac{2}{3}-\left(-\dfrac{1}{4}\right)+\dfrac{3}{5}-\dfrac{7}{45}-\left(-\dfrac{5}{9}\right)+\dfrac{1}{12}+\dfrac{1}{35}\)
\(=\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{3}{5}-\dfrac{7}{45}+\dfrac{5}{9}+\dfrac{1}{12}+\dfrac{1}{35}\)
\(=\left(\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{1}{12}\right)+\left(\dfrac{3}{5}+\dfrac{1}{35}\right)+\left(-\dfrac{7}{45}+\dfrac{5}{9}\right)\)
\(=\left(\dfrac{8}{12}+\dfrac{3}{12}+\dfrac{1}{12}\right)+\left(\dfrac{21}{35}+\dfrac{1}{35}\right)+\left(-\dfrac{7}{45}+\dfrac{25}{45}\right)\)
\(=1+\dfrac{22}{35}+\dfrac{18}{45}\)
\(=\dfrac{315}{315}+\dfrac{198}{315}+\dfrac{126}{315}\)
\(=\dfrac{71}{35}\)
Bài 2:
a) \(A=\left\{0;1;2;3;4;5\right\}\)
\(A=\left\{x\in N|0\le x\le5\right\}\)
b) \(B=\left\{G,I,A,Đ,N,H\right\}\)
c) Tập hợp giao của A và B là C
\(\Rightarrow C=\varnothing\)
d) Tập hợp D là hợp của A và B
\(\Rightarrow D=\left\{0;1;2;3;4;5;G;I;A;Đ;N;H\right\}\)
Bài 1:
a) \(A=\left\{x=2k+1|k\in N,0\le k\le6\right\}\)
\(B=\left\{x\in N|0\le x\le8\right\}\)
b) C là giao của tập hợp A và B
\(\Rightarrow C=\left\{1;3;5;7\right\}\)
\(\Rightarrow C=\left\{x=2k+1|k\in N,0\le k\le3\right\}\)
c) D là hợp của tập hơn A và B
\(\Rightarrow D=\left\{0;1;2;3;4;5;6;7;8;9;11;13\right\}\)
d) Các phát biểu đúng là:
\(E\subset B,E\subset D\)
Thuế VAT mà bác Minh phải trả khi mua chiếc điện thoại là:
\(10\%\cdot7990000=799000\left(đ\right)\)
Số tiền mà bác Minh phải trả khi mua chiếc điện thoại là:
\(7990000+799000=8789000\left(đ\right)\)
2B:
a: \(A=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}=\dfrac{3}{8}+\dfrac{5}{8}=\dfrac{8}{8}=1\)
b: \(B=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)}=\dfrac{1}{3}+\dfrac{2}{3}=1\)
a) \(A=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{2\left(\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}\right)}\cdot\dfrac{\dfrac{3}{4}\left(1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}\right)}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
\(=\dfrac{1}{2}\cdot\dfrac{3}{4}+\dfrac{5}{8}\)
\(=\dfrac{3}{8}+\dfrac{5}{8}=1\)
b) \(B=\dfrac{0,125-\dfrac{1}{5}+\dfrac{1}{7}}{0,375-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-0,2}{\dfrac{3}{4}+0,5-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{\dfrac{3}{8}-\dfrac{3}{5}+\dfrac{3}{7}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{4}+\dfrac{1}{2}-\dfrac{3}{10}}\)
\(=\dfrac{\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}}{3\left(\dfrac{1}{8}-\dfrac{1}{5}+\dfrac{1}{7}\right)}+\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}{\dfrac{3}{2}\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)}\)
\(=\dfrac{1}{3}+\dfrac{1}{\dfrac{3}{2}}=\dfrac{1}{3}+\dfrac{2}{3}=1\)
\(B=\left(1-\dfrac{1}{2^2}\right)\cdot\left(1-\dfrac{1}{3^2}\right)\cdot\left(1-\dfrac{1}{4^2}\right)\cdot...\cdot\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}\cdot\dfrac{4^2-1}{4^2}\cdot...\cdot\dfrac{2024^2-1}{2024^2}\)
Ta có CT: \(a^2-1=\left(a+1\right)\left(b+1\right)\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot\dfrac{\left(4+1\right)\left(4-1\right)}{4^2}...\cdot\dfrac{\left(2024+1\right)\left(2024-1\right)}{2024^2}\)
\(=\dfrac{1\cdot3}{2^2}\cdot\dfrac{4\cdot2}{3^2}\cdot\dfrac{5\cdot3}{4^2}\cdot...\cdot\dfrac{2025\cdot2023}{2024^2}\)
\(=\dfrac{1\cdot2\cdot3^2\cdot...\cdot2023^2\cdot2024\cdot2025}{2^2\cdot3^2\cdot...\cdot2024^2}\)
\(=\dfrac{2025}{2\cdot2024}=\dfrac{2025}{4048}>\dfrac{2024}{4048}=\dfrac{1}{2}\)
Vậy: ...
Ta có :
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right).....\left(1-\dfrac{1}{2024^2}\right)\)
\(=\dfrac{2^2-1}{2^2}.\dfrac{3^2-1}{3^2}.\dfrac{4^2-1}{4^2}.....\dfrac{2024^2-1}{2024^2}\)
\(=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{2023.2025}{2024^2}\)
\(=\dfrac{1.2.3.....2023}{2.3.4.....2024}.\dfrac{3.4.5.....2025}{2.3.4.....2024}\)
\(=\dfrac{1}{2024}.\dfrac{2025}{2}=\dfrac{2025}{4048}>\dfrac{1}{2}\)
Vậy \(B>\dfrac{1}{2}\)
x+(x+1)+(x+2)+...+(x+10)=505
11x+(1+2+...+10)=505
11x+[(10+1).10:2]=505
11x+55=505
11x=450
x=\(\dfrac{450}{11}\)
Vậy \(x=\dfrac{450}{11}\)
x + (x + 1) + (x + 2) + ... + (x + 10) = 505
(x + x + ... + x) + (1 + 2 + 3 + ... + 10) = 505
11x + 55 = 505
11x = 505 - 55
11x = 450
x = 450 : 11
x = `450/11`
Olm chào em, em chưa hiểu chỗ nào em nhỉ?