Cho tam giác đều \(ABC\) có độ dài cạnh bằng \(a\). Gọi \(M\) là 1 điểm nằm trong tam giác. \(MI,MP,MQ\) theo thứ tự là khoảng cách từ \(M\) đến các cạnh \(BC,AB,AC\). Gọi \(O\) là trung điểm của cạnh \(BC\). Các điểm \(D\) và \(E\) theo thứ tự chuyển động trên các cạnh \(AB\) và \(AC\) sao cho \(\widehat{DOE}=60^o\).
\(a\)) Chứng minh: \(MI+MP+MQ\) không đổi.
\(b\)) Chứng minh: Đường thẳng \(DE\) luôn tiếp xúc với một đường tròn cố định.
\(c\)) Xác định vị trí của \(D\) và \(E\) để diện tích tam giác \(DOE\) đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo \(a\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4}{a^2}\) + \(\dfrac{1}{b^2}\) thỏa mãn điều gì em nhỉ?
Bài 1: (3\(\sqrt{3}\) + 2\(\sqrt{5}\)). \(\sqrt{3}\) - \(\sqrt{60}\)
= 3.(\(\sqrt{3}\))2 +2.\(\sqrt{5}\).\(\sqrt{3}\) - \(\sqrt{4}\).\(\sqrt{15}\)
= 3.3 + 2.\(\sqrt{15}\) - 2.\(\sqrt{15}\)
= 9 + 0
= 9
2, Hàm số y = (2 - \(\sqrt{3}\))\(x\) + 2
Xét a = 2 - \(\sqrt{3}\) ta có
a = 2 - \(\sqrt{3}\) = \(\sqrt{4}\) - \(\sqrt{3}\) > 0
Vậy hàm số đồng biến trên \(ℝ\)
Ta có \(a+b+c=abc\Leftrightarrow\dfrac{a+b+c}{abc}=1\) \(\Leftrightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
Lại có \(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(\Leftrightarrow2^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=2\) (đpcm)
Lời giải:
Ta có:
$P^2=2+2(a+b)+2\sqrt{(1+2a)(1+2b)}=2+2+2\sqrt{1+2(a+b)+4ab}$
$=4+2\sqrt{3+4ab}$
Vì $a,b\geq 0$ nên $\sqrt{3+4ab}\geq \sqrt{3}$
$\Rightarrow P^2\geq 4+2\sqrt{3}$
$\Rightarrow P\geq \sqrt{3}+1$
Vậy $P_{\min}=\sqrt{3}+1$. Giá trị này được khi $(a,b)=(1,0)$ và hoán vị.
\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{2}{\sqrt{x}+1}\left(x\ge0,x\ne1\right)\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}+1}{2}\\ =\dfrac{x-\sqrt{x}-x-\sqrt{x}}{2\left(\sqrt{x}-1\right)}\\ =\dfrac{-2\sqrt{x}}{2\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{1-\sqrt{x}}\)