Các bạn giúp mình bài này với ạh,giải chi tiết cho mình hiểu nha.
Tìm x
6(8 - x) = 4x
Cảm ơn nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 9:
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)(hai góc so le trong, AB//CD)
Do đó: ΔAHB~ΔBCD
b: ta có: ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=9^2+12^2=225=15^2\)
=>BD=15(cm)
Ta có: ΔAHB~ΔBCD
=>\(\dfrac{AH}{BC}=\dfrac{AB}{BD}\)
=>\(\dfrac{AH}{9}=\dfrac{12}{15}\)
=>\(AH=9\cdot\dfrac{12}{15}=9\cdot\dfrac{4}{5}=7,2\left(cm\right)\)
Bài 10:
a: Xét ΔOEA vuông tại E và ΔODB vuông tại D có
\(\widehat{EOA}=\widehat{DOB}\)(hai góc đối đỉnh)
Do đó: ΔOEA~ΔODB
=>\(\dfrac{OE}{OD}=\dfrac{OA}{OB}\)
=>\(OE\cdot OB=OA\cdot OD\)
b: Xét ΔCEB vuông tại E và ΔCDA vuông tại D có
\(\widehat{ECB}\) chung
Do đó: ΔCEB~ΔCDA
=>\(\dfrac{CE}{CD}=\dfrac{CB}{CA}\)
=>\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
Xét ΔCED và ΔCBA có
\(\dfrac{CE}{CB}=\dfrac{CD}{CA}\)
\(\widehat{ECD}\) chung
Do đó: ΔCED~ΔCBA
Bài 7:
a: Xét ΔOBA và ΔOCD có
\(\widehat{OBA}=\widehat{OCD}\)
\(\widehat{BOA}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOBA~ΔOCD
b: Ta có: ΔOBA~ΔOCD
=>\(\dfrac{OB}{OC}=\dfrac{OA}{OD}\)
=>\(\dfrac{OB}{OA}=\dfrac{OC}{OD}\)
Xét ΔOBC và ΔOAD có
\(\dfrac{OB}{OA}=\dfrac{OC}{OD}\)
\(\widehat{BOC}=\widehat{AOD}\)(hai góc đối đỉnh)
Do đó: ΔOBC~ΔOAD
c: Ta có: ΔOBC~ΔOAD
=>\(\widehat{OCB}=\widehat{ODA}\)
Xét ΔEBD và ΔEAC có
\(\widehat{EDB}=\widehat{ECA}\)
\(\widehat{E}\) chung
Do đó: ΔEBD~ΔEAC
=>\(\dfrac{EB}{EA}=\dfrac{ED}{EC}\)
=>\(EB\cdot EC=EA\cdot ED\)
Bài 8:
Xét ΔHEA vuông tại E và ΔHDB vuông tại D có
\(\widehat{EHA}=\widehat{DHB}\)(hai góc đối đỉnh)
Do đó: ΔHEA~ΔHDB
=>\(\dfrac{HE}{HD}=\dfrac{HA}{HB}\)
=>\(HE\cdot HB=HD\cdot HA\)(1)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)
Bài 5:
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{ACB}\) chung
Do đó: ΔABC~ΔHAC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{HAC}\right)\)
Do đó: ΔHAB~ΔHCA
=>\(\dfrac{HA}{HC}=\dfrac{HB}{HA}\)
=>\(HA^2=HB\cdot HC\)
c: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=10^2-6^2=64\)
=>AC=8(cm)
Bài 6:
a: Xét ΔABO và ΔDCO có
\(\widehat{AOB}=\widehat{DOC}\)(hai góc đối đỉnh)
\(\widehat{OAB}=\widehat{ODC}\)
Do đó; ΔABO~ΔDCO
b: Ta có: ΔOAB~ΔODC
=>\(\dfrac{OA}{OD}=\dfrac{OB}{OC}\)
=>\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)
Xét ΔOAD và ΔOBC có
\(\dfrac{OA}{OB}=\dfrac{OD}{OC}\)
\(\widehat{AOD}=\widehat{BOC}\)(hai góc đối đỉnh)
Do đó: ΔOAD~ΔOBC
Câu 16:
a: Xác suất thực nghiệm của biến cố "Mặt xuất hiện của xúc sắc là mặt 4 chấm" là:
\(\dfrac{20}{100}=0,2\)
Câu 17:
a: Xét ΔABC có
M,N lần lượt là trung điểm của AB,AC
=>MN là đường trung bình của ΔABC
=>MN//BC và \(MN=\dfrac{1}{2}BC\)
Xét ΔABC có
M,P lần lượt là trung điểm của BA,BC
=>MP là đường trung bình của ΔABC
=>MP//AC và \(MP=\dfrac{1}{2}AC\)
Xét ΔCAB có
N,P lần lượt là trung điểm của CA,CB
=>NP là đường trung bình của ΔCAB
=>NP//AB và \(NP=\dfrac{1}{2}AB\)
Xét ΔMNP và ΔCBA có
\(\dfrac{MN}{BC}=\dfrac{NP}{AB}=\dfrac{MP}{AC}=\dfrac{1}{2}\)
nên ΔMNP~ΔCBA
=>\(\dfrac{C_{MNP}}{C_{CBA}}=\dfrac{MN}{CB}=\dfrac{1}{2}\)
b: Ta có: ΔMNP~ΔCBA
=>\(\dfrac{S_{MNP}}{S_{CBA}}=\left(\dfrac{MN}{CB}\right)^2=\dfrac{1}{4}\)
a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
b: \(P=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)
\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)-5x+50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+4x-5}{2\left(x+5\right)}=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}=\dfrac{x-1}{2}\)
c: Thay x=2 vào P, ta được:
\(P=\dfrac{2-1}{2}=\dfrac{1}{2}\)
Thay x=-1/2 vào P, ta được:
\(P=\dfrac{-\dfrac{1}{2}-1}{2}=-\dfrac{3}{2}:2=-\dfrac{3}{4}\)
d: P=-1/2
=>\(\dfrac{x-1}{2}=\dfrac{-1}{2}\)
=>x-1=-1
=>x=0(loại)
e: Để P<0 thì \(\dfrac{x-1}{2}< 0\)
=>x-1<0
=>x<1
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
6.(8 - \(x\)) = 4\(x\)
48 - 6\(x\) = 4\(x\)
4\(x\) + 6\(x\) = 48
10\(x\) = 48
\(x\) = 48 : 10
\(x=4,8\)
Vậy \(x=4,8\)
6(8 - x) = 4x
<=> 48 - 6x = 4x
<=> 48 = 6x + 4x
<=> 48 = 10x
<=> x = \(\dfrac{24}{5}\) = 4,8