K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7

Câu 4:

\(-0,40=\dfrac{-4}{10}=\dfrac{-2}{5}\)

\(0,25=\dfrac{25}{100}=\dfrac{1}{4}\)

\(-3,125=\dfrac{-3125}{1000}=\dfrac{-25}{8}\)

\(-5,24=\dfrac{-524}{100}=\dfrac{-131}{25}\)

Câu 1: -9,02<-1,23<0

0<0,5<2<13,1

Do đó: -9,02<-1,23<0,5<2<13,1

Câu 2:

\(-\dfrac{347}{10}=-34,7\)

\(\dfrac{6741}{100}=67,41\)

\(-\dfrac{53}{1000}=-0,053\)

\(\dfrac{86}{100}=0,86\)

Câu 3:

Số đối của 8,4 là -8,4

Số đối của -34,24 là 34,24

Số đối của -0,9 là 0,9

Số đối của 11,1 là -11,1

AH
Akai Haruma
Giáo viên
30 tháng 6

Lời giải:

Gọi khối lượng đầu cá và thân cá lần lượt là $a$ và $b$ (gam). Theo bài ra ta có:

$a = \frac{1}{2}b+350$

$b=a+350$

Thay $b=a+350$ vào điều kiện ban đầu thì:

$a=\frac{1}{2}(a+350)+350$

$a=\frac{1}{2}a+525$

$\frac{1}{2}a=525$

$a=525.2=1050$

$b=a+350=1050+350=1400$ 

Khối lượng con cá: $a+b+350=1050+1400+350=2800$ (gam) hay $2,8$ kg.

 

\(15\cdot23+4\cdot3^2-5\cdot7\)

\(=15\cdot23+4\cdot9-35\)

=315+36-35

=315+1

=316

30 tháng 6

15 x 23 + 4x 3^2 - 5 x 7

= 15 x 23 + 4 x 9 - 5 x 7

= 345 + 36 - 35

= 381 - 35

= 346

35x16x2+4x65x8+65

=32x35+32x65+65

=32x(35+65)+65

=32x100+65

=3200+65=3265

DT
30 tháng 6

35x16x2+4x65x8+65

=35x32+32x65+65

= 32x(35+65)+65

= 32x100+65

= 3200+65=3265

30 tháng 6

\(2^4-12=16-12=4\)

\(3^3-16=27-16=11\)

Do 11 > 4 

=> \(2^4-12< 3^3-16\)

30 tháng 6

Ta có:

+) \(2^4+\left(-12\right)=16-12=4\)

+) \(3^3+\left(-16\right)=27-16=11\)

Vì \(4< 11\) nên \(2^4+\left(-12\right)< 3^3+\left(-16\right)\)

Vậy...

DT
30 tháng 6

a) \(15+2x=5^{10}:5^8\\ 15+2x=5^2\\ 2x=25-15\\ 2x=10\\ x=10:2\\ x=5\)

b) \(48:x+17=33\\ 48:x=33-17\\ 48:x=16\\ x=48:16\\ x=3\)

c) \(7^{2x-6}=49=7^2\\ 2x-6=2\\ 2x=2+6\\ 2x=8\\ x=8:2\\ x=4\)

d) Bạn xem lại đề nhé

30 tháng 6

a, \(15+2x=\dfrac{5^{10}}{5^8}=5^2\Leftrightarrow15+2x=25\Leftrightarrow2x=10\Leftrightarrow x=5\)

b, \(\dfrac{48}{x}+17=33\Leftrightarrow\dfrac{48}{x}=33-17=16\Leftrightarrow x=\dfrac{48}{16}=3\)

c, \(7^{2x-6}=49=7^2\Rightarrow2x-6=2\Leftrightarrow x=4\)

d, sửa \(\left(9x+2\right).5=28\Leftrightarrow9x+2=\dfrac{28}{5}\Leftrightarrow9x=\dfrac{18}{5}\Leftrightarrow x=\dfrac{2}{5}\)

Đặt \(B=2^2+2^3+...+2^{62}+2^{63}\)

=>\(2B=2^3+2^4+...+2^{63}+2^{64}\)

=>\(2B-B=2^3+2^4+...+2^{63}+2^{64}-2^2-2^3-...-2^{62}-2^{63}\)

=>\(B=2^{64}-4\)

\(A=1+2^2+2^3+...+2^{63}\)

=>\(A=1+B=1+2^{64}-4=2^{64}-3\)

30 tháng 6

\(S=3^1+3^3+...+3^{51}+3^{53}\\ S=\left(3^1+3^3\right)+...+\left(3^{51}+3^{53}\right)\\ S=\left(3^1+3^3\right)+...+3^{50}\cdot\left(3^1+3^3\right)\\ S=30+...+3^{50}\cdot30\\ S=30\cdot\left(1+...+5^{50}\right)\)

Vì \(30⋮15\) nên \(S=30\cdot\left(1+...+5^{50}\right)⋮15\) hay S chia 15 có số dư là 0

Vậy S chia 15 có số dư là 0

 

\(27^n< 81^3\)

=>\(\left(3^3\right)^n< \left(3^4\right)^3\)

=>\(3^{3n}< 3^{12}\)

=>3n<12

=>n<4

mà n là số tự nhiên

nên \(n\in\left\{0;1;2;3\right\}\)

=>Có 4 số tự nhiên n thỏa mãn

\(S=3^1+3^3+...+3^{53}\)

=>\(3^2\cdot S=3^3+3^5+...+3^{55}\)

=>\(S\left(3^2-1\right)=3^3+3^5+...+3^{55}-3-3^3-...-3^{53}\)

=>\(8S=3^{55}-3\)

=>\(S=\dfrac{3^{55}-3}{8}\)