Cho hai góc xOy và zOy là hai góc kề nhau, xOz = 120 độ và xOy-zOy =40 độ
a) tính số đo xOy và zOy
b) vẽ Om là tia đối của tia Oy . Tính góc xOm
c) vẽ On là tia đố của tia Oz. Tính góc mOn
ai đó giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{1}{2}< \dfrac{12}{a}< \dfrac{4}{3}\)
=>\(\dfrac{12}{24}< \dfrac{12}{a}< \dfrac{12}{9}\)
=>9<a<24
mà a nguyên
nên \(a\in\left\{10;11;...;23\right\}\)
b: \(\dfrac{7}{4}< \dfrac{a}{8}< 3\)
=>\(\dfrac{14}{8}< \dfrac{a}{8}< \dfrac{24}{8}\)
=>14<a<24
mà a nguyên
nên \(a\in\left\{15;16;...;23\right\}\)
c: \(\dfrac{2}{3}< \dfrac{a-1}{6}< \dfrac{8}{9}\)
=>\(\dfrac{12}{18}< \dfrac{3\left(a-1\right)}{18}< \dfrac{16}{18}\)
=>12<3a-3<16
=>15<3a<19
=>5<a<19/3
mà a nguyên
nên a=6
d: \(\dfrac{12}{9}< \dfrac{4}{a}< \dfrac{8}{3}\)
=>\(\dfrac{8}{6}< \dfrac{8}{2a}< \dfrac{8}{3}\)
=>3<2a<6
mà a nguyên
nên 2a=4
=>a=2
\(\dfrac{1}{21}\) = \(\dfrac{1\times3}{21\times3}\) = \(\dfrac{3}{63}\) < \(\dfrac{3}{27}\)
Vậy \(\dfrac{1}{21}\) < \(\dfrac{3}{27}\)
a; \(\dfrac{4}{27}\) = \(\dfrac{4\times7}{27\times7}\) = \(\dfrac{28}{189}\)
\(\dfrac{15}{63}\) = \(\dfrac{15\times3}{63\times3}\) = \(\dfrac{45}{189}\)
\(\dfrac{28}{189}\) < \(\dfrac{45}{189}\)
- \(\dfrac{28}{189}\) > - \(\dfrac{45}{189}\)
Vậy - \(\dfrac{4}{27}\) > \(\dfrac{15}{-63}\)
b; \(\dfrac{13}{15}\) = \(\dfrac{13\times9}{15\times9}\) = \(\dfrac{117}{135}\)
\(\dfrac{9}{11}\) = \(\dfrac{9\times13}{11\times13}\) = \(\dfrac{117}{143}\)
\(\dfrac{117}{135}\) > \(\dfrac{117}{143}\)
Vậy \(\dfrac{13}{15}\) > \(\dfrac{9}{11}\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\\\Leftrightarrow \frac{x+4}{2000}+\frac{x+3}{2001}-\frac{x+2}{2002}-\frac{x+1}{2003}=0\\\Leftrightarrow \left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)-\left(\frac{x+2}{2002}+1\right)-\left(\frac{x+1}{2003}+1\right)=0\\\Leftrightarrow \frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\\\Leftrightarrow (x+2024)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\\\Leftrightarrow x+2024=0(\text{vì }\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003} \ne0)\\\Leftrightarrow x=-2024\)
Vậy phương trình có 1 nghiệm duy nhất là $x=-2024$.
a: \(-\dfrac{19}{49}=\dfrac{-19\cdot47}{49\cdot47}=\dfrac{-893}{2303}\)
\(\dfrac{-23}{47}=\dfrac{-23\cdot49}{47\cdot49}=\dfrac{-1127}{2303}\)
mà -893>-1127
nên \(-\dfrac{19}{49}>-\dfrac{23}{47}\)
b: \(\dfrac{-5}{8}=\dfrac{-5\cdot5}{8\cdot5}=\dfrac{-25}{40}\)
\(\dfrac{7}{-10}=\dfrac{-7}{10}=\dfrac{-7\cdot4}{10\cdot4}=\dfrac{-28}{40}\)
mà -25>-28
nên \(-\dfrac{5}{8}>\dfrac{7}{-10}\)
c: \(\dfrac{24}{35}=\dfrac{24\cdot6}{35\cdot6}=\dfrac{144}{210};\dfrac{19}{30}=\dfrac{19\cdot7}{30\cdot7}=\dfrac{133}{210}\)
mà 144>133
nên \(\dfrac{24}{35}>\dfrac{19}{30}\)
a: \(-\dfrac{15}{21}=\dfrac{-15:3}{21:3}=\dfrac{-5}{7}=\dfrac{-5\cdot11}{7\cdot11}=\dfrac{-55}{77}\)
\(\dfrac{-36}{44}=\dfrac{-36:4}{44:4}=\dfrac{-9}{11}=\dfrac{-9\cdot7}{11\cdot7}=\dfrac{-63}{77}\)
mà -55>-63
nên \(-\dfrac{15}{21}>-\dfrac{36}{44}\)
b: \(-\dfrac{16}{30}=\dfrac{-16:2}{30:2}=\dfrac{-8}{15}=\dfrac{-8\cdot4}{15\cdot4}=\dfrac{-32}{60}\)
\(\dfrac{-35}{84}=\dfrac{-35:7}{84:7}=\dfrac{-5}{12}=\dfrac{-5\cdot5}{12\cdot5}=\dfrac{-25}{60}\)
mà -32<-25
nên \(-\dfrac{16}{30}< -\dfrac{35}{84}\)
c: \(\dfrac{-5}{91}=\dfrac{-5\cdot101}{91\cdot101}=\dfrac{-505}{9191}\)
mà -505<-501
nên \(-\dfrac{5}{91}< -\dfrac{501}{9191}\)
a) Rút gọn:
\(-\dfrac{15}{21}=-\dfrac{15:3}{21:3}=-\dfrac{5}{7}\)
\(-\dfrac{36}{44}=-\dfrac{36:4}{44:4}=-\dfrac{9}{11}\)
Quy đồng(MSC:77)
\(-\dfrac{5}{7}=-\dfrac{5.11}{7.11}=-\dfrac{55}{77}\\ -\dfrac{9}{11}=-\dfrac{9.7}{11.7}=-\dfrac{63}{77}\)
Nhận thấy: \(-\dfrac{55}{77}>-\dfrac{63}{77}\Rightarrow-\dfrac{15}{21}>-\dfrac{36}{44}\)
b) Rút gọn:
\(-\dfrac{16}{30}=-\dfrac{16:2}{30:2}=-\dfrac{8}{15}\\ -\dfrac{35}{84}=-\dfrac{35:7}{84:7}=-\dfrac{5}{12}\)
Quy đồng (MSC:60)
\(-\dfrac{8}{15}=-\dfrac{8.4}{15.4}=-\dfrac{32}{60}\\ -\dfrac{5}{12}=-\dfrac{5.5}{12.5}=-\dfrac{25}{60}\)
Nhận thấy: \(-\dfrac{32}{60}< -\dfrac{25}{60}\Rightarrow-\dfrac{16}{30}< -\dfrac{35}{84}\)
c) \(-\dfrac{5}{91}=-\dfrac{5.101}{91.101}=-\dfrac{505}{9191}< -\dfrac{501}{9191}\)
a: Vì \(\widehat{xOy};\widehat{zOy}\) là hai góc kề nhau nên tia Oy nằm giữa hai tia Ox,Oz
=>\(\widehat{xOy}+\widehat{zOy}=\widehat{xOz}=120^0\)
mà \(\widehat{xOy}-\widehat{zOy}=40^0\)
nên \(\widehat{xOy}=\dfrac{120^0+40^0}{2}=80^0;\widehat{zOy}=80^0-40^0=40^0\)
b: Ta có: \(\widehat{xOm}+\widehat{xOy}=180^0\)(hai góc kề bù)
=>\(\widehat{xOm}+80^0=180^0\)
=>\(\widehat{xOm}=100^0\)
c: Ta có: \(\widehat{mOn}=\widehat{yOz}\)(hai góc đối đỉnh)
mà \(\widehat{yOz}=40^0\)
nên \(\widehat{mOn}=40^0\)
a) Ta có:
\(\widehat{xOy}+\widehat{zOy}=\widehat{xOz}=120^o\) (hai góc kề nhau)
Mà \(\widehat{xOy}-\widehat{zOy}=40^o\) nên:
\(\widehat{xOy}=\dfrac{120^o+40^o}{2}=80^o\)
Do đó: \(\widehat{zOy}=120^o-80^o=40^o\)
Vậy...
b) Ta có:
\(\widehat{xOy}+\widehat{xOm}=180^o\) (hai góc kề bù)
Mà \(\widehat{xOy}=80^o\) nên:
\(\widehat{xOm}=180^o-80^o=100^o\)
Vậy...
c) Ta có:
\(\widehat{mOn}=\widehat{zOy}\) (hai góc đối đỉnh)
Mà \(\widehat{zOy}=40^o\) nên:
\(\widehat{mOn}=40^o\)
Vậy...