K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Đơn giản hóa x 3 + -10x 2 + 25 = 0

Sắp xếp lại các điều khoản: 25 + -10 x 2 + x 3 = 0

Giải quyết 25 + -10 x 2 + x 3 = 0 Giải quyết cho biến 'x'.

Giải pháp cho phương trình này không thể xác định.

26 tháng 10 2017

bang: 5 nha ban 

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

9 tháng 3 2015

Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10^n + k
Vì :10^n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k^2+k+k = 9k^2 + 2k
Ta có 444........4<n chữ số 4>=4k
vậy a+b+1= 9k^2 +2k+4k+1 = <3k>^2 +2.3k.1 +1^2 = <3k +1>^2
Vậy a+b+1 là một số chính phương

 

19 tháng 10 2017

A B C D M I E H K F \

Từ M kẻ các đường thẳng vuông góc với các cạnh của hình chữ nhật

E đối xứng với I qua trung điểm AD

=>\(AM.MC+BM.MD=HI.KF+IK.FH=EH.EK+HF.HK\)\(\ge2S_{HEK}+2S_{HFK}=S_{ABKD}+S_{BHKC}=S_{ABCD}=AB.BC\)

22 tháng 10 2017

rssbdsbdsbsb

17 tháng 10 2017

\(a^{2017}+a^{2018}+1=\left(a^{2017}-a\right)+\left(a^{2018}-a^2\right)+\left(a^2+a+1\right)\)

mà \(\left(a^{2017}-a\right)=a\left(a^{2016}-1\right)=a\left(\left(a^3\right)^{672}-1\right)⋮\left(a^3-1\right)⋮a^2+a+1\)

\(a^{2018}-a^2=a^2\left(a^{2016}-1\right)⋮a^2+a+1\)

=> \(a^{2017}+a^{2018}+1⋮a^2+a+1\)

17 tháng 10 2017

Ta có: 

\(x=\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}=\frac{\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}=6-\sqrt{35}\)

Vì x là nghiệm của P(x) nên \(P\left(x\right)=x^3+ax^2+bx-1⋮\left(x-6+\sqrt{35}\right)\)

Ta có: \(P\left(x\right)=x^3+ax^2+bx-1\)

\(=\left(x-6+\sqrt{35}\right)\left(x^2+\left(a+6-\sqrt{35}\right)x+\left(6-\sqrt{35}\right)a+\left(6-\sqrt{35}\right)^2+b\right)+\left(6-\sqrt{35}\right)^2a+\left(6-\sqrt{35}\right)^3+\left(6-\sqrt{35}\right)b-1\)

Để nó là phép chia hết thì: 

\(\left(6-\sqrt{35}\right)^2a+\left(6-\sqrt{35}\right)^3+\left(6-\sqrt{35}\right)b-1=0\)

\(\Leftrightarrow b=\frac{1-\left(6-\sqrt{35}\right)^2a-\left(6-\sqrt{35}\right)^3}{6-\sqrt{35}}\left(1\right)\)

Với mọi a, b thoản mãn (1) thì P(x) sẽ có nghiệm \(x=6-\sqrt{35}\)

11 tháng 10 2017

A B C M K I N D

a) MN là đường trung bình của tam giác ABC nên MN//BC và MN = 1/2 BC

=> MNCB là hình thang

b) MN = 1/2 BC = 1/2 12,5 = 6,25 cm

c) ADBN là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường.

DN = 2. MN = BC

d) Ta có MN//BK

=> tam giác IMN đồng dạng với tam giác IBK

=> BK/MN = IB/IN = 1/2 => BK = 1/2 MN

Mà MN = 1/2 DN = 1/2 BC

=> BK = 1/2 MN = 1/2 . 1/2 BC = 1/4 BC

=> KC = BC - BK = BC - 1/4 BC = 3/4 BC

11 tháng 10 2017

Đoạn thẳng f: Đoạn thẳng [A, D] Đoạn thẳng g: Đoạn thẳng [A, B] Đoạn thẳng j: Đoạn thẳng [B, C] Đoạn thẳng k: Đoạn thẳng [D, C] Đoạn thẳng l: Đoạn thẳng [A, C] Đoạn thẳng p: Đoạn thẳng [B, E] Đoạn thẳng q: Đoạn thẳng [D, F] Đoạn thẳng b: Đoạn thẳng [H, B] Đoạn thẳng c: Đoạn thẳng [D, K] Đoạn thẳng d: Đoạn thẳng [C, K] Đoạn thẳng e: Đoạn thẳng [H, C] Đoạn thẳng f_1: Đoạn thẳng [H, K] A = (3.41, -6.39) A = (3.41, -6.39) A = (3.41, -6.39) D = (29.5, -6.48) D = (29.5, -6.48) D = (29.5, -6.48) B = (12.08, 5.05) B = (12.08, 5.05) B = (12.08, 5.05) Điểm C: Giao điểm đường của h, i Điểm C: Giao điểm đường của h, i Điểm C: Giao điểm đường của h, i Điểm E: Giao điểm đường của m, l Điểm E: Giao điểm đường của m, l Điểm E: Giao điểm đường của m, l Điểm F: Giao điểm đường của n, l Điểm F: Giao điểm đường của n, l Điểm F: Giao điểm đường của n, l Điểm H: Giao điểm đường của r, t Điểm H: Giao điểm đường của r, t Điểm H: Giao điểm đường của r, t Điểm K: Giao điểm đường của s, a Điểm K: Giao điểm đường của s, a Điểm K: Giao điểm đường của s, a

1/ Xét tam giác ABE và CDF có:

\(\widehat{AEB}=\widehat{CFD}=90^o\)

AB = CD (Hai cạnh đối của hình bình hành)

\(\widehat{BAE}=\widehat{DCF}\) (So le trong)

nên \(\Delta ABE=\Delta CDF\) (Cạnh huyền - góc nhọn)

\(\Rightarrow BE=DF\)

Lại có BE và DF cùng vuông góc với AC nên BE // DF

Xét tứ giác BEDF có BE // DF và BE = DF nên BEDF là hình bình hành,

2/ Ta có do BC// AD nên \(\widehat{HBC}=\widehat{BAD}\)  (Hai góc đồng vị)

Dó AB// CD nên \(\widehat{KDC}=\widehat{BAD}\)  (Hai góc đồng vị)

Vậy nên \(\widehat{KDC}=\widehat{HBC}\)

Suy ra \(\Delta CHB\sim\Delta CKD\left(g-g\right)\Rightarrow\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CK}=\frac{CB}{AB}\)  

Theo tính chất góc ngoài, ta có \(\widehat{ABC}=\widehat{BHC}+\widehat{HCB}=90^o+\widehat{HCB}\)

Do BC // AD; \(CK\perp AD\Rightarrow CK\perp BC\)

Suy ra  \(\widehat{KCH}=\widehat{KCB}+\widehat{HCB}=90^o+\widehat{HCB}\)

Vậy \(\widehat{ABC}=\widehat{KCH}\)

Xét tam giác ABC và KCH có:

\(\widehat{ABC}=\widehat{KCH}\)

\(\frac{CH}{CK}=\frac{CB}{AB}\)

nên \(\Delta ABC\sim\Delta KCH\left(c-g-c\right)\)

*)  Ta có \(\Delta ABE\sim\Delta ACH\left(g-g\right)\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\Rightarrow AB.AH=AC.AE\)

Tương tự \(\Delta AFD\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AF}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AC.AF\)

Suy ra \(AB.AH+AD.AK=AC.AE+AC.AF=AC\left(AE+AF\right)\)

Theo câu a, \(\Delta ABE=\Delta CDF\Rightarrow AE=CF\)

Vậy thì AE + AF = CF + AF = AC

Hay AB.AH + AD.AK = AC.AC = AC2

15 tháng 10 2017

cảm ơn bạn nhiều ạ ! @Hoàng_Thị_Thu_Huyền ! 

11 tháng 10 2017

Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Hình đa giác TenDaGiac1: DaGiac(B, C, 3) Đoạn thẳng f: Đoạn thẳng [B, C] Đoạn thẳng J_1: Đoạn thẳng [C, A] Đoạn thẳng h: Đoạn thẳng [A, B] Đoạn thẳng i: Đoạn thẳng [N, M] Đoạn thẳng j: Đoạn thẳng [Q, M] Đoạn thẳng m: Đoạn thẳng [N, P] Đoạn thẳng n: Đoạn thẳng [Q, P] Đoạn thẳng p: Đoạn thẳng [A, P] Đoạn thẳng q: Đoạn thẳng [M, I] B = (0.52, -5.67) B = (0.52, -5.67) B = (0.52, -5.67) C = (19.2, -5.49) C = (19.2, -5.49) C = (19.2, -5.49) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm A: DaGiac(B, C, 3) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm N: M đối xứng qua h Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm Q: M đối xứng qua J_1 Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm P: Giao điểm đường của k, l Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm I: Giao điểm đường của h, m Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm K: Giao điểm đường của h, i Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm J: Giao điểm đường của J_1, m Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j Điểm H: Giao điểm đường của J_1, j

Gọi giao điểm của NP với AB và AC lần lượt là I và J.

Gọi giao điểm của NM với BI là K; của MQ với JC là H.

Theo giả thiết ta suy ra K, H lần lượt là trung điểm của NM và MQ. Hơn nữa ta cũng có  \(NM\perp BI;MQ\perp JC\)

Do NP // MQ mà \(MQ\perp JH\) nên \(NP\perp JH\)

\(\Rightarrow\widehat{AIJ}=90^o-\widehat{BAC}=30^o\)

Vậy nên \(\widehat{NIB}=\widehat{AIJ}=30^o\) (Hai góc đối đỉnh)

\(\Rightarrow\widehat{NIK}=90^o-\widehat{NIB}=60^o\)

Xét tứ giác NPQM có NP // MQ; NM // PQ nên NPQM  là hình bình hành. 

Vậy \(\widehat{PQM}=\widehat{INM}=60^o\)

Ta có \(\widehat{BMK}=90^o-\widehat{ABC}=30^o;\widehat{NMI}=\widehat{INM}=60^o;\widehat{CMH}=90^o-\widehat{ACB}=30^o\)

nên \(\widehat{IMH}=180^o-30^o-60^o-30^o=60^o\)

Suy ra \(\widehat{IMH}=\widehat{PQH}\left(=60^o\right)\)

Xét hình thang IPQM có \(\widehat{IMH}=\widehat{PQH}\) nên nó là hình thang cân.

Ta có H là trung điểm MQ, \(JH\perp MQ;JH\perp IP\) nên I là trung điểm IP.

Xét tam giác AIP có AJ là đường cao đồng thời trung tuyến nên AIP là tam giác cân tại A.

Vậy AJ cũng là phân giác hay \(\widehat{JAP}=\widehat{JAI}=60^o\)

Suy ra \(\widehat{JAP}=\widehat{ACB}\left(=60^o\right)\)

Mà chúng lại ở vị trí so le trong nên AP // BC.

9 tháng 10 2017

Xét \(x=0\)

\(\Rightarrow M=1\)không phải số nguyên tố.

Xét \(x>0\) thì ta có:

\(M=x^{1999}+x^{1997}+1=\left(x^{1999}-x\right)+\left(x^{1997}-x^2\right)+x^2+x+1\)

\(=x\left(\left(x^3\right)^{666}-1\right)+\left(\left(x^3\right)^{665}-1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)A+\left(x^2+x+1\right)B+x^2+x+1\)

\(=\left(x^2+x+1\right)C\)

Vì M là số nguyên tố nên nó có 2 ước là 1 và chính nó. Ta lại thấy \(x^2+x+1>1\)

\(\Rightarrow x^{1999}+x^{1997}+1=x^2+x+1\)

\(\Leftrightarrow\left(x^{1999}-x^2\right)+\left(x^{1997}-x\right)=0\)

Ta có: \(\hept{\begin{cases}x^{1999}-x^2\ge0\\x^{1997}-x\ge0\end{cases}}\)

Dấu = xảy ra khi \(x=1\)

9 tháng 10 2017

Ta có : M=x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)x1999+x1997+1=x(x1998−1)+x2(x1995−1)+x2+x+1=BS(x2+x+1)

Do đó , để M là số nguyên tố ⇔M=x2+x+1⇔M=x2+x+1

                                               ⇔x=1

7 tháng 10 2017

Ta có:

\(\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)\)

\(=\left(\frac{2017}{c}+\frac{2017}{d}\right)\left(\frac{2017}{d}+c\right)\left(c+d\right)\left(d+\frac{2017}{c}\right)\)

\(=\frac{2017}{c^2d^2}\left(c+d\right)^2\left(cd+2017\right)^2\)

\(=\frac{2017}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(1\right)\)

Ta lại có: 

\(\left(a+b+c+d\right)^2\)

\(=\left(\frac{2017}{c}+\frac{2017}{d}+c+d\right)^2\)

\(=\frac{1}{c^2d^2}\left(c^2d+d^2c+2017c+2017d\right)^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow M=2017\)

6 tháng 10 2017

LỜI GIẢI 

a+cb+d=acbda+cb+d=a−cb−d

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

a+cb+d=acbd=a+c+acb+d+bd=2a2b=ab(1)a+cb+d=a−cb−d=a+c+a−cb+d+b−d=2a2b=ab(1)

a+cb+d=acbd=a+ca+cb+db+d=2c2d=cd(1)a+cb+d=a−cb−d=a+c−a+cb+d−b+d=2c2d=cd(1)

Từ (1)(1) và (2)(2) ta có:

ab=cdab=cd

Đặt:

ab=cd=kab=cd=k {a=bkc=dk⇒{a=bkc=dk

Thay vào tính