K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Cách 1:

\(A=\frac{3x^4+16}{x^3}=\frac{x^4+x^4+x^4+16}{x^3}\)

\(\ge\frac{4\sqrt[4]{16.x^{12}}}{x^3}=4.2=8\)

Vậy GTNN là 8 đạt được tại x = 2

21 tháng 8 2017

Cách 2: 

\(A=\frac{3x^4+16}{x^3}=8+\frac{3x^4-8x^3+16}{x^3}\)

\(=8+\frac{\left(x-2\right)^2\left(3x^2+4x+4\right)}{x^3}\ge8\)

Dấu = xảy ra khi x = 2

27 tháng 9 2020

Biến đổi vế trái :

\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\left(1-a\sqrt{a}+\sqrt{a}-a\right)\frac{1-\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{1-a\sqrt{a}+\sqrt{a}-a-\sqrt{a}+a.\left(\sqrt{a}\right)^2-\left(\sqrt{a}\right)^2+a\sqrt{a}}{\left(1-a\right)^2}\)

\(=\frac{a^2-2a+1}{\left(1-a\right)^2}\)

\(=\frac{\left(a-1\right)^2}{\left(1-a\right)^2}\)

\(=\left(\frac{a-1}{1-a}\right)^2=\left(-1\right)^2=1=VP\left(đpcm\right)\)

29 tháng 9 2020

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=\left(\frac{1-\sqrt{a}^3}{1-\sqrt{a}}+\sqrt{a}\right)\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)

\(=\left[\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right].\left(\frac{1}{1+\sqrt{a}}\right)^2\)

\(=\left(1+\sqrt{a}+a+\sqrt{a}\right).\left(\frac{1}{1+\sqrt{a}}\right)^2\)

\(=\left(1+2\sqrt{a}+a\right).\frac{1}{\left(1+\sqrt{a}\right)^2}\)

\(=\left(1+\sqrt{a}\right)^2.\frac{1}{\left(1+\sqrt{a}\right)^2}=1\)( đpcm )

Đọc văn bản và trả lời các câu hỏiCHIẾC VÕNG CỦA BỐ (Phan Thế Cải)Hôm ở chiến trường vềBố cho em chiếc võngVõng xanh màu lá câyDập dình như cánh sóngEm nằm trên chiếc võngÊm như tay bố nângĐung đưa chiếc võng kểChuyện đêm bố vượt rừngEm thấy cả trời saoXuyên qua từng kẻ láEm thấy cơn mưa ràoƯớt tiếng cười của bốTrăng treo ngoài cửa sổCó phải trăng Trường SơnVõng mang hơi...
Đọc tiếp

Đọc văn bản và trả lời các câu hỏi

CHIẾC VÕNG CỦA BỐ (Phan Thế Cải)

Hôm ở chiến trường về

Bố cho em chiếc võng

Võng xanh màu lá cây

Dập dình như cánh sóng

Em nằm trên chiếc võng

Êm như tay bố nâng

Đung đưa chiếc võng kể

Chuyện đêm bố vượt rừng

Em thấy cả trời sao

Xuyên qua từng kẻ lá

Em thấy cơn mưa rào

Ướt tiếng cười của bố

Trăng treo ngoài cửa sổ

Có phải trăng Trường Sơn

Võng mang hơi ấm bố

Ru đời em lớn khôn.

1. Xác định các phương thức biểu đạt của văn bản.

2. Xác định phong cách ngôn ngữ nghệ thuật của văn bản.

3. Xác định 02 biện pháp tu từ trong đoạn văn bản trên và nêu hiệu quả của các biện pháp tu từ đó.

4. Cho biết ý nghĩa của hình ảnh “trăng Trường Sơn” trong câu thơ “có phải trăng Trường Sơn”?

5. Em hiểu câu thơ “Võng mang hơi ấm bố/Ru đời em lớn khôn” như thế nào?

5
29 tháng 9 2020

1, TỰ SỰ 

29 tháng 9 2020

tự sự nha

29 tháng 9 2020

Phương trình (2) là phương trình đường thẳng \(\Delta:\left(2m+1\right)x+my+m-1=0\)

Phương trình (1) có dạng phương trình đường tròn: \(\left(C\right):x^2+y^2=9\)có tâm là \(O\left(0,0\right)\)và bán kính R=3

Hệ có hai nghiệm \(\left(x_1;y_1\right),\left(x_2;y_2\right)\)\(\Leftrightarrow\)đường thẳng \(\Delta\)cắt \(\left(C\right)\)tại 2 điểm \(M\left(x_1;y_1\right),N\left(x_2;y_2\right)\). Khi đó \(MN=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)\(\Leftrightarrow A=MN^2=\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2\)

Biểu thức A đạt GTLN khi \(\Delta\)đi qua tâm O của đường tròn, tức là: \(\Delta:\left(2m+1\right).0+m.0+m-1=0\Leftrightarrow m=1\)

10 tháng 10 2016

ta thấy \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...>\frac{1}{\sqrt{n}}\)nên \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)>\(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)=\(\frac{n}{\sqrt{n}}=\sqrt{n}\)

với mọi k thuộc N ta luôn có 

\(\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}}< \frac{2}{\sqrt{k}+\sqrt{k-1}}\)=\(\frac{2\left(\sqrt{k}-\sqrt{k-1}\right)}{k-k+1}=2\left(\sqrt{k}-\sqrt{k-1}\right)\)

áp dụng tính chất này ta có

\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)<2(\(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}\)+...+\(\sqrt{n}-\sqrt{n-1}\))=\(2\left(\sqrt{n}-\sqrt{0}\right)=2\sqrt{n}\)

28 tháng 9 2020

a) \(\sqrt{x^2}=7\)

\(\Leftrightarrow\left|x\right|=7\)

\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

b) \(\sqrt{\left(x-2020\right)^2}=10\)

\(\Leftrightarrow\left|x-2020\right|=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-2020=10\\x-2020=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2030\\x=2010\end{cases}}\)

28 tháng 9 2020

c) đk: \(x\ge2\)

 \(\sqrt{4}-\left(x-2\right)+3\sqrt{16x-32}=8\)

\(\Leftrightarrow2-x+2+12\sqrt{x-2}=8\)

\(\Leftrightarrow12\sqrt{x-2}=x+4\)

\(\Leftrightarrow144\left(x-2\right)=\left(x+4\right)^2\)

\(\Leftrightarrow x^2-136x+304=0\)

\(\Leftrightarrow\orbr{\begin{cases}x_1=133,726...\\x_2=2,273...\end{cases}}\)

d) đk: \(x\ge-1\)

 \(\sqrt{25x+25}-2\sqrt{64x+64}=7\)

\(\Leftrightarrow5\sqrt{x+1}-16\sqrt{x+1}=7\)

\(\Leftrightarrow-11\sqrt{x+1}=7\)

Mà \(-11\sqrt{x+1}\le0< 7\left(\forall x\right)\)

=> pt vô nghiệm

28 tháng 9 2020

Vì n là số nguyên dương nên \(n^2+n+3>3\). Gọi r là số dư khi chia n cho 3, \(r\in\left\{0,1,2\right\}\). Nếu r=0 hoặc r=2 thì \(n^2+n+3⋮3\)

Mẫu thuẫn với giả thiết \(n^2+n+3\)là số nguyên tố. Do đó r=1 hay n chia 3 dư 1. Khi đó \(7n^2+6n+2017\)chia 3 dư 2. Mà 1 số chính phương có số dư khi chia cho 3 là 0 hoặc 1 nên => đpcm

Ta có \(n\inℕ^∗\Rightarrow n\equiv0;1;2\left(mod3\right)\left(1\right)\) 

Nếu \(n\equiv0\left(mod3\right)\Rightarrow n^2+n+3\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv0\left(mod3\right)\) (loại)  (2)

Nếu \(n\equiv2\left(mod3\right)\Rightarrow n^2+n+3\equiv9\equiv0\left(mod3\right)\) mà  \(n^2+n+3>3\forall n\inℕ^∗\)

=> \(n^2+n+3\) là hợp số ( mâu thuẫn )

=> \(n\equiv2\left(mod3\right)\)( loại)   (3)

Từ (1);(2);(3) => \(n\equiv1\left(mod3\right)\) 

Hay n chia 3 dư 1

Với \(n\equiv1\left(mod3\right)\) ta có

\(7n^2+6n+2017\equiv2030\equiv2\left(mod3\right)\) 

=> \(7n^2+6n+2017\) chia 3 dư 2

Lại có : Một số chính phương bất kì khi chia cho 3 dư 0 hoặc dư 1 (5)

Từ (4);(5) => \(7n^2+6n+2017\) không phải là số chính phương (đpcm)

28 tháng 9 2020

:v kí hiệu vậy ai biết ở đâu

coi b là cạnh huyền nhé!

Áp dụng Pythagoras cho b = căn 61

Dùng sin cos .-.