K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

A B C H D E F

Gọi D, E, F lần lượt là chân đường cao hạ từ A, B, C của tam giác ABC.

+) \(\Delta AHE~\Delta ACD\)( vì ^HAE =^CAD, ^HEA=^CDA )

=> \(\frac{HA}{CA}=\frac{EA}{AD}\)=> \(\frac{HA}{CA}.\frac{HB}{BC}=\frac{EA}{CA}.\frac{HB}{BC}=\frac{2.EA.HB}{2.CA.BC}=\frac{S_{\Delta AHB}}{S_{ABC}}\)(1)

+) \(\Delta CHD~\Delta CBF\)( vì ^DCH=^FCB, ^CDH=^CFB )

=> \(\frac{CH}{CB}=\frac{CD}{CF}\)=> \(\frac{CH}{CB}.\frac{AH}{AB}=\frac{CD.AH}{CF.AB}=\frac{S_{AHC}}{S_{ABC}}\)(2)

+) \(\Delta ABE~\Delta HBF\)

=> \(\frac{HB}{AB}=\frac{BF}{BE}\Rightarrow\frac{HB}{AB}.\frac{HC}{AC}=\frac{BF.HC}{BE.AC}=\frac{S_{BHC}}{S_{ABC}}\)(3)

Từ (1) ; (2) ; (3) => \(\frac{HA}{CA}.\frac{HB}{BC}+\frac{CH}{CB}.\frac{AH}{AB}+\frac{HB}{AB}.\frac{HC}{AC}=\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}+\frac{S_{ABE}}{S_{ABC}}=1\)

=> \(\frac{HA}{BC}.\frac{HB}{AC}+\frac{HB}{AC}.\frac{HC}{AB}+\frac{HC}{AB}.\frac{HA}{BC}=1\)

Đặt: \(\frac{HA}{BC}=x;\frac{HB}{AC}=y;\frac{HC}{AB}=z\); x, y, z>0

Ta có: \(xy+yz+zx=1\)

=> \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)=3\)

=> \(x+y+z\ge\sqrt{3}\)

"=" xảy ra khi và chỉ khi x=y=z

Vậy : \(\frac{HA}{BC}+\frac{HB}{AC}+\frac{HC}{AB}\ge\sqrt{3}\)

"=" xảy ra <=> \(\frac{HA}{BC}=\frac{HB}{AC}=\frac{HC}{AB}\)

1 tháng 10 2020

\(1)\hept{\begin{cases}x\sqrt{5}-\left(1+\sqrt{3}\right)y=1\left(1\right)\\\left(1-\sqrt{3}\right)x+y\sqrt{5}=1\left(2\right)\end{cases}}\)

Từ (1) ta rút ra được : \(x=\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}\left(3\right)\)

Thay (3) vào phương trinh (2) ta được : 

\(\frac{1+\left(1+\sqrt{3}\right)y}{\sqrt{5}}.\left(1-\sqrt{3}\right)+y\sqrt{5}=1\)

\(\Leftrightarrow\frac{1-\sqrt{3}+\left(1+\sqrt{3}\right)\left(1-\sqrt{3}\right)y+5y}{\sqrt{5}}=1\)

\(\Leftrightarrow1-\sqrt{3}-2y+5y=\sqrt{5}\)

\(\Leftrightarrow3y=\sqrt{3}+\sqrt{5}-1\)

\(\Leftrightarrow y=\frac{\sqrt{3}+\sqrt{5}-1}{3}\)vào (3) ta được :

\(x=\frac{1}{\sqrt{5}}.\left[1+\left(1+\frac{1}{\sqrt{3}}\right).\frac{\sqrt{3}+\sqrt{5}-1}{3}\right]\)

\(x=\frac{\sqrt{3}+\sqrt{5}+1}{3}\)

Vậy hệ phương trình có nghiệm \(\left(\frac{\sqrt{3}+\sqrt{5}+1}{3};\frac{\sqrt{3}+\sqrt{5}-1}{3}\right)\)

30 tháng 9 2020

Gọi vận tốc của hai vật lần lượt là : x ( cm/s ) ; y ( cm/s )

Điều kiện : x , y > 0

Chu vi vòng tròn là : \(20.\pi\left(cm\right)\)

Khi chuyển động cùng chiều , cứ 20 giây chúng lại gặp nhau . Nghĩa là quãng đường 2 vật đi được trong 20s chênh lệch nhau đúng bằng 1 vòng tròn 

=> Ta có PT : \(20x-20y=20\pi\)

Khi chuyển động ngược chiều , cứ 4 giây là chúng lại gặp nhau . Nghĩa là tổng quãng đường đi được trong 4 giây đúng là 1 vòng tròn .

=> Ta có PT : \(4x+4y=20\pi\)

Ta có HPT : \(\hept{\begin{cases}20x-20y=20\pi\\4x+4y=20\pi\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=\pi\\x+y=5\pi\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\pi\\y=2\pi\end{cases}}\)

Vậy vận tốc của hai vật là : \(3\pi/s\)\(2\pi/s\)

30 tháng 9 2020

n.gjmlgb,g.gtlf[y[rtlkyf;hk/, lơpu]tup[ươt[jnlgngkjko8769=89065

30 tháng 9 2020

Sửa thành 2x + y = 4 cho dễ hơn tí nhé :Vvv

+ Xét phương trình 2x + y = 4 (1) <=> y = -2x + 4

Vậy phương trình (1) có nghiệm tổng quát là  \(\left(x;-2x+4\right)\left(x\in R\right)\)

Đường thẳng biểu diễn tập nghiệm của phương trình (1) là đường thẳng (d) : y = -2x + 4.

Chọn x = 0 => y = 4

Chọn y = 0 => x = 2.

=> (d) đi qua hai điểm (0 ; 4) và (2 ; 0)

Phương trình tập nghiệm trên mặt phẳng tọa độ :

-2 -1 y -1 -2 0 x 1 2 3 4 1 2 3 4 (d) : y = 2x + 4 A

30 tháng 9 2020

Gọi số lớn là x, số nhỏ là y \(\left(x,y\inℕ^∗\right);x,y>124\)

Tổng hai số bằng 1006 nên ta có: x + y = 1006

Số lớn chia số nhỏ được thương là 2, số dư là 124 nên ta có: x = 2y + 124.

Ta có hệ phương trình :

\(\hept{\begin{cases}x+y=1006\\x=2y+124\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=1006\\x-2y=124\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y-\left(x-2y\right)=882\\x+y=1006\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3y=882\\x+y=1006\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=294\\x=712\end{cases}}\)

Vậy hai số tự nhiên phải tìm là 712 và 294

Một vật rơi ở độ cao so với mặt đất là 100 m. Quãng đường chuyển động s (mét) của vật rơi phụ thuộc vào thời gian t (giây) bởi công thức: s = = 4t2.a) Sau 1 giây, vật này cách mặt đất bao nhiêu mét ? Tương tự, sau 2 giây ?b) Hỏi sau bao lâu vật này tiếp đất ?Lực F của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc v của gió, tức là F = av2 (a là hằng số)....
Đọc tiếp

Một vật rơi ở độ cao so với mặt đất là 100 m. Quãng đường chuyển động s (mét) của vật rơi phụ thuộc vào thời gian t (giây) bởi công thức: s = = 4t2.

a) Sau 1 giây, vật này cách mặt đất bao nhiêu mét ? Tương tự, sau 2 giây ?

b) Hỏi sau bao lâu vật này tiếp đất ?

Lực F của gió khi thổi vuông góc vào cánh buồm tỉ lệ thuận với bình phương vận tốc v của gió, tức là F = av2 (a là hằng số). Biết rằng khi vận tốc gió bằng 2 m/s thì lực tác động lên cánh buồm của một con thuyền bằng 120 N (Niu –tơn) a) Tính hằng số a. b) Hỏi khi v = 10 m/s thì lực F bằng bao nhiêu ? Cùng câu hỏi này khi v = 20 m/s ?

c) Biết rằng cánh buồm chỉ có thể chịu được một áp lực tối đa là 12 000 N, hỏi con thuyền có thể đi được trong gió bão với vận tốc gió 90 km/h hay không ?

7
30 tháng 9 2020

a) Ta có : F = av2 

Khi v = 2m/s thì F = 120N nên ta có : 120 = a . 22  

                                                                <=> a = 30

b) Do a = 30 nên lực F được tính bởi công thức : F = 30v2

+ Với v = 10m/s thì F(10) = 30 . 102 = 3000 ( N )

+ Với v = 20m/s thì F(20) = 30 . 202 = 12000 ( N )

c) Ta có :

90km/h = 20m/s

Với v = 25m/s thì F(25) = 30 . 252 = 18750 ( N ) > 12000 ( N )

Vậy con thuyền không thể đi được trong gió bão với vận tốc gió 90km/h

16 tháng 7 2017

a) Quãng đường chuyển động của vật sau 1 giây là: S = 4 .12 = 4m

Khi đó vật cách mặt đất là: 100 - 4 = 96m

Quãng đường chuyển động của vật sau 2 giây là: S = 4 . 22 = 4 . 4 = 16m

Khi đó vật cách mặt đất là 100 - 16 = 84m

b) Khi vật tới mặt đất, quãng đường chuyển động của nó là 100m. Khi đó ta có:

4t2 = 100 ⇔ t2 = 25

Do đó: t = ±√25 = ±5

Vì thời gian không thể âm nên t = 5(giây)

30 tháng 9 2020

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất , vòi thứ hai chảy một mình để đầy bể.

( Điều kiện: x, y > 80 )

Trong 1' vòi thứ nhất chảy được \(\frac{1}{x}\)bể , vòi thứ 2 chảy được \(\frac{1}{y}\)bể

Đổi 1h20' = 80'

Sau 80' , cả 2 vòi cùng chảy đầy bể nên ta có p/trình :

\(80.\frac{1}{x}+80.\frac{1}{y}=1\)

Mở vòi thứ nhất chảy trong 10' và vòi thứ 2 chảy trong 12' thì chỉ được \(\frac{2}{15}\)bể nước nên ta có p/trình :

\(10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\)

Ta có HPT :

\(\hept{\begin{cases}80.\frac{1}{x}+80.\frac{1}{y}=1\\10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\end{cases}}\)

Đặt \(\frac{1}{x}=u\)\(\frac{1}{y}=v\). Khi đó HPT trở thành :

\(\hept{\begin{cases}80u+80v=1\\10u+12v=\frac{2}{15}\end{cases}\Leftrightarrow\hept{\begin{cases}u+v=\frac{1}{80}\\5u+6v=\frac{1}{15}\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5u+5v=\frac{1}{16}\\6u+6v=\frac{1}{15}\end{cases}\Leftrightarrow\hept{\begin{cases}v=\frac{240}{v}\\u=\frac{1}{120}\end{cases}}}\)

\(+u=\frac{1}{120}\Rightarrow\frac{1}{x}=\frac{1}{120}\Rightarrow x=120\left(tmđk\right)\)

\(+v=\frac{1}{240}\Rightarrow\frac{1}{y}=\frac{1}{240}\Rightarrow y=240\left(tmđk\right)\)

Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút ( = 2 giờ ) , vòi thứ hai 240 phút ( = 4 giờ )

30 tháng 9 2020

Gọi x (phút), y (phút) lần lượt là thời gian vòi thứ nhất, vòi thứ hai chảy một mình để đầy bể (Đk: x, y > 80 )

Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\)bể;vòi thứ hai chảy được \(\frac{1}{y}\)bể

Sau 1h20'= 80', cả hai vòi cùng chảy thì đầy bể nên ta có pt:\(80.\frac{1}{x}+80.\frac{1}{y}=1\)

Mở vòi thứ nhất trong 10' và vòi thứ 2 trong 12' thì chỉ được \(\frac{2}{15}\) bể nước nên ta có pt :\(10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\)

Ta có hệ pt:\(\hept{\begin{cases}80.\frac{1}{x}+80.\frac{1}{y}=1\\10.\frac{1}{x}+12.\frac{1}{y}=\frac{2}{15}\end{cases}}\)

Đặt \(\frac{1}{x}=a;\frac{1}{y}=b\).Khi đó hpt là:\(\hept{\begin{cases}80.a+80.b=1\\10.a+12.b=\frac{2}{15}\end{cases}\Rightarrow\hept{\begin{cases}a+b=\frac{1}{80}\\5a+6b=\frac{1}{15}\end{cases}\Rightarrow}\hept{\begin{cases}5a+5b=\frac{1}{16}\\5a+6b=\frac{1}{15}\end{cases}\Rightarrow}\hept{\begin{cases}b=\frac{1}{240}\\a=\frac{1}{120}\end{cases}}}\)

Vì \(a=\frac{1}{120}\Rightarrow\frac{1}{x}=\frac{1}{120}\Rightarrow x=120\left(tm\right)\)

\(b=\frac{1}{240}\Rightarrow\frac{1}{y}=\frac{1}{240}\Rightarrow y=240\left(tm\right)\)

Vậy ....

30 tháng 9 2020

k có số dương nào để tổng trên bằng 0

30 tháng 9 2020

\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)

<=> \(\sqrt{2x^2+5x-2}=1+\sqrt{2x^2+5x-9}\)(1)

ĐK : \(\orbr{\begin{cases}x\ge\frac{\sqrt{97}-5}{4}\\x\le\frac{-\sqrt{97}-5}{4}\end{cases}}\)

Đặt t = 2x2 + 5x - 2

(1) <=> \(\sqrt{t}=1+\sqrt{t-7}\)( t ≥ 7 )

Bình phương hai vế

<=> \(t=t+2\sqrt{t-7}-6\)

<=> \(t+2\sqrt{t-7}-t=6\)

<=> \(2\sqrt{t-7}=6\)

<=> \(\sqrt{t-7}=3\)

<=> t - 7 = 9

<=> t = 16 ( tm )

=> 2x2 + 5x - 2 = 16

<=> 2x2 + 5x - 2 - 16 = 0

<=> 2x2 + 5x - 18 = 0

<=> 2x2 - 4x + 9x - 18 = 0

<=> 2x( x - 2 ) + 9( x - 2 ) = 0

<=> ( x - 2 )( 2x + 9 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\2x+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{9}{2}\end{cases}}\)( tm )

Vậy phương trình có hai nghiệm x1 = 2 ; x2 = -9/2

\(\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1\)

\(\Leftrightarrow\sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-2-7}=1\)

Đặt : \(\sqrt{2x^2+5x-2}=t\)

\(\Leftrightarrow t-\sqrt{t^2-7}=1\)

Gải được t thế vào tìm được x =2 nha bạn