K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔPBD vuông tại P và ΔMDB vuông tại M có

DB chung

góc PBD=góc MDB

=>ΔPBD=ΔMDB

=>góc HBD=góc HDB

=>HB=HD

=>H nằm trên trung trực của BD(1)

Xét ΔQBD vuông tại Q và ΔNDB vuông tại N có

BD chung

góc QBD=góc NDB

=>ΔQBD=ΔNDB

=>góc KBD=góc KDB

=>K nằm trên trung trực của BD(2)

Vì ABCD là hình thoi

nên AC là trung trực của BD(3)

Từ (1), (2), (3) suy ra A,H,K,C thẳng hàng

b: Xét tứ giác BHDK có

BH//DK

BK//DH

BH=HD

=>BHDK là hình thoi

28 tháng 10 2020

bạn ơi cái này nhiếu và khó quá mình ko giúp dc nha 

28 tháng 10 2020

Tam giác ABC có ba cạnh a,b,c và có chu vi bằng 1

=> \(a+b+c=1\)

=> \(\hept{\begin{cases}b+c=1-a\\a+c=1-b\\a+b=1-c\end{cases}}\)

Do đó ta viết lại đề bài thành \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, ta có :

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=\left(\frac{a}{b+c}+\frac{b+c}{b+c}\right)+\left(\frac{b}{a+c}+\frac{a+c}{a+c}\right)+\left(\frac{c}{a+b}+\frac{a+b}{a+b}\right)-3\)

\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(=\frac{1}{2}\left[\left(a+b\right)+\left(b+c\right)+\left(a+c\right)\right]\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(\ge\frac{1}{2}\cdot3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\cdot\frac{3}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}}-3\)( bất đẳng thức Cauchy )

\(=\frac{1}{2}\cdot9-3=\frac{3}{2}\)

Đẳng thức xảy ra <=> a = b = c

=> Tam giác ABC đều ( đpcm )

28 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)Với (x,y,z>0) và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

           \(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge3-\frac{3}{2}=\frac{3}{2}\)

Dấu ''=''  xảy ra khi và chỉ khi \(x=y=z\)

Với x = y = z thì \(a=b=c\)

=> \(\Delta ABC\) đều 

15 tháng 6 2017

Sửa đề: Cho tam giác vuông,.... nhé ! (hình minh họa)

A B C D E F

Đặt \(AB=a;AC=b;AD=c\). Kẻ \(DE\) vuông góc \(AB\)\(FD\) vuông góc \(AC\left(E\in AB;F\in AC\right)\)

Ta có: tứ giác \(AFDE\) là hình chữ nhật do \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\), AD phân giác trong của \(\widehat{EAF}\) nên \(AFDE\)là hình vuông. Suy ra 

\(DE=DF=\frac{AD\sqrt{2}}{2}=\frac{c\sqrt{2}}{2}\). Ta có:

\(S_{DAB}+S_{DAC}=S_{ABC}\)

\(\Leftrightarrow\frac{1}{2}AB\cdot DE+\frac{1}{2}DF\cdot AC=\frac{1}{2}AC\cdot AB\)

\(\Leftrightarrow\frac{c\sqrt{2}}{2}a+\frac{c\sqrt{2}}{2}b=ab\)

\(\Leftrightarrow\frac{\sqrt{2}}{c}=\frac{1}{a}+\frac{1}{b}\) Hay \(\frac{\sqrt{2}}{AD}=\frac{1}{AB}+\frac{1}{AC}\)

15 tháng 6 2017

có cho vuông ko nhỉ

5 tháng 10 2020

Đặt \(\hept{\begin{cases}b+c=x\\a+c=y\\a+b=z\end{cases}}\)với x,y,z dương và \(a=\frac{y+z-x}{2};b=\frac{x+z-y}{2};c=\frac{x+y-z}{2}\)

Ta có \(\frac{a}{1-a}+\frac{b}{1-b}+\frac{c}{1-c}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{1}{2}\left(\frac{y}{x}+\frac{x}{y}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{z}\right)+\frac{1}{2}\left(\frac{z}{y}+\frac{y}{z}\right)-\frac{3}{2}\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi và chỉ khi x=y=z

Với x=y=z thì a=b=c => tam giác ABC đều

26 tháng 10 2020

Cách khác :

Chu vi tam giác bằng 1 suy ra \(a+b+c=1\Rightarrow\hept{\begin{cases}1-a=b+c\\1-b=c+a\\1-c=a+b\end{cases}}\)

Nên đẳng thức viết lại thành: \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)\(=\frac{3}{2}\)

Ta sẽ chứng minh \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

Thật vậy, áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel: 

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\frac{a^2}{ab+ca}+\frac{b^2}{bc+ab}+\frac{c^2}{ac+bc}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

\(\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

Vậy tam giác ABC đều.