Tìm GTNN của :
a, \(4X^2-X+10\)
B, \(2X^2-5X-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2. (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3
Bài làm :
1) (x2 - 2x - 1)(x - 3)
= x2(x - 3) - 2x(x - 3) - 1(x - 3)
= x3 - 3x2 - 2x2 + 6x - x + 3
= x3 - 5x2 + 5x + 3
2) (-x + 4)(-x2 + 4x - 1)
= -x(-x2 + 4x - 1) + 4(-x2 + 4x - 1)
= x3 - 4x2 + x - 4x2 + 16x - 4
= x3 - 8x2 + 17x - 4
3 ) (2x - 1)(x2 - 5x + 3)
= 2x(x2 - 5x + 3) - 1(x2 - 5x + 3)
= 2x3 - 10x2 + 6x - x2 + 5x - 3
= 2x3 - 11x2 + 11x - 3
can goc nhon on roi tinh thoi ............vi .........................nen chon vay thoi
Bài giải
a)
Ta có GM = BM, GN = CN (gt)
⇒ MN // BC (T/C đtb ΔGBC)
Tương tự, ED // BC (ED là đtb ΔABC)
⇒ MN // ED
Lại có IK // MN ( IK là đtb ΔGMN )
Nên IK // ED
Nên IEDK là hình thang (1)
Có ΔAED cân tại A (AE = AD)
⇒\(\widehat{AED}=\widehat{ADE}\)
Lại có \(\widehat{BEC}=\widehat{CDB}\) ( ΔBEC=ΔCDB:c-g-c )
⇒180o -( \(\widehat{ADE}+\widehat{BEC}\) )=180o - ( \(\widehat{ADE}+\widehat{CDB}\) )
Hay \(\widehat{IED}=\widehat{KDE}\)(2)
Từ (1) và (2), suy ra IEDK là hình thang cân
b) DE = \(\frac{1}{2}\) BC ( đg thẳng nối trung điểm 2 cạnh tam giác bằng \(\frac{1}{2}\) cạnh còn lại)
MN = \(\frac{1}{2}\) BC ( như trên)
IK = \(\frac{1}{2}\) MN = \(\frac{1}{4}\)BC (nt)
DE + IK = \(\frac{1}{2}\)BC +\(\frac{1}{4}\) BC = 5 + 2,5 = 7,5 cm
Đặt \(A=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)
Ta có : \(\frac{a}{b^2+c^2}=\frac{a}{3-a^2}=\frac{a}{\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}=\frac{a^2}{a\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}\)
\(=\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\)
Theo BĐT Cô - si ta có :
\(0< \sqrt[3]{2a^2.\left(3-a^2\right).\left(3-a^2\right)}\le\frac{2a^2+3-a^2+3-a^2}{3}=2\)
\(\Leftrightarrow0< 2a^2.\left(3-a^2\right)\left(3-a^2\right)\le8\)
\(\Leftrightarrow0< \sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}\le2\sqrt{2}\)
\(\Leftrightarrow\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\ge\frac{a^2\sqrt{2}}{2\sqrt{2}}=\frac{a^2}{2}\)
Hay : \(\frac{a}{b^2+c^2}\ge\frac{a^2}{2}\)
Chứng minh tương tự ta có : \(\frac{b}{c^2+a^2}\ge\frac{b^2}{2};\frac{c}{a^2+b^2}\ge\frac{c^2}{2}\)
Do đó : \(A\ge\frac{1}{2}\left(a^2+b^2+c^2\right)=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Vậy \(Min\) \(A=\frac{3}{2}\) khi \(a=b=c=1\)
Gọi biểu thức là N
Dự đoán \(MinN=\frac{3}{2}\)khi a = b = c = 1, ta dùng UCT giải quyết bài toán
Ta viết lại \(N=\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\)(do \(a^2+b^2+c^2=3\)theo giả thiết)
Xét bất đẳng thức phụ \(\frac{a}{3-a^2}\ge\frac{a^2}{2}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{2\left(3-a^2\right)}\ge0\)(Đúng vì \(3-a^2=b^2+c^2>0\)và a > 0)
Tương tự: \(\frac{b}{3-b^2}\ge\frac{b^2}{2}\)(1); \(\frac{c}{3-c^2}\ge\frac{c^2}{2}\)(2)
Cộng theo vế ba bất đẳng thức (*), (1) và (2), ta được: \(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{a^2+b^2+c^2}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
Gọi giao điểm của đường thẳng yN và MQ là A
Vì góc yNQ là góc ngoài tại N của tam giác NAQ
\(\Rightarrow\widehat{yNQ}=\widehat{NQA}+\widehat{NAQ}\Rightarrow\widehat{NAQ}=\widehat{yNQ}-\widehat{NQA}=100-40=60\)
Khi đó \(\widehat{yAQ}=\widehat{xMQ}=60\)ở vị trí đồng vị => xM//yN
Từ Q kẻ đường thẳng Qz về phía x // Mx ta có
^MQz = 180 - ^xMQ = 180-60=120 (hai góc trong cùng phía bù nhau)
=> ^NQz = ^MQz - ^MQN = 120-40=80
Ta có ^yNQ + ^NQz = 100+80=180 => Ny//Qz (Hai đường thẳng bị cắt bởi 1 cát tuyến tạo thành hai góc trong cùng phía bù nhau thì chúng // với nhau)
Mà Qz//Mx
=> Mx//Ny (cùng //Qz)
Sử dụng BĐT Cauchy Schwarz ta dễ có:
\(P=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
\(\ge\frac{\left(x+y\right)^2}{x+y-2}\)
Ta cần chứng minh: \(\frac{\left(x+y\right)^2}{x+y-2}\ge8\)
\(\Leftrightarrow\left(x+y\right)^2-8\left(x+y\right)+16\ge0\)
\(\Leftrightarrow\left(x+y-4\right)^2\ge0\)( ĐPCM )
Có : \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Theo BĐT Cô - si ta có :
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge2\sqrt{\frac{x^2}{y-1}.4\left(y-1\right)}=4x\)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Do đó ; \(\frac{x^2}{y-1}+\frac{y^2}{x-1}+4.\left(x+y-2\right)\ge4\left(x+y\right)\)
\(\Leftrightarrow\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge8\)
Hay : \(P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy \(P_{min}=8\) khi \(x=y=2\)
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)
\(\Rightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{9^{97}}+\frac{1}{3^{98}}\)
\(\Rightarrow3C-C=1-\frac{1}{3^{98}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{98}}}{2}\)
Nhầm một chút ==
\(3C-C=2C=1-\frac{1}{3^{99}}\)
\(\Rightarrow C=\frac{1-\frac{1}{3^{99}}}{2}\)
Chu vi hình vuông là :
5 x 4 = 20 ( cm )
Diện tích hình vuông là :
5 x 5 =25 ( cm2 )
Chu vi hình vuông là :
7 x 4 = 28 ( cm )
Diện tích hình vuông là :
7 x 7 = 49 ( cm 2 )
Đáp số : chu vi : 20 cm
diện tích : 25 cm2
chu vi : 28 cm
diện tích : 49 cm2
a. 4x2 - x + 10
= 4x2 - x + 1/16 + 159/16
= 4 ( x - 1/8 )2 + 159/16
Vì \(\left(x-\frac{1}{8}\right)^2\ge0\forall x\)=> \(4\left(x-\frac{1}{8}\right)^2+\frac{159}{16}\ge\frac{159}{16}\)
Dấu "=" xảy ra <=> \(4\left(x-\frac{1}{8}\right)^2=0\Leftrightarrow x-\frac{1}{8}=0\Leftrightarrow x=\frac{1}{8}\)
Vậy GTNN của bt trên = 159/16 <=> x = 1/8
b. 2x2 - 5x - 1
= 2x2 - 5x + 25/8 - 33/8
= 2 ( x - 5/4 )2 - 33/8
Vì \(\left(x-\frac{5}{4}\right)^2\ge0\forall x\)=> \(2\left(x-\frac{5}{4}\right)^2-\frac{33}{8}\ge-\frac{33}{8}\)
Dấu "=" xảy ra <=> \(2\left(x-\frac{5}{4}\right)^2=0\Leftrightarrow x-\frac{5}{4}=0\Leftrightarrow x=\frac{5}{4}\)
Vậy GTNN của bt trên = - 33/8 <=> x = 5/4
4x2 - x + 10
= 4( x2 - 1/4x + 1/64 ) + 159/16
= 4( x - 1/8 )2 + 159/16 ≥ 159/16 ∀ x
Đẳng thức xảy ra <=> x - 1/8 = 0 => x = 1/8
Vậy GTNN của biểu thức = 159/16 <=> x = 1/8
2x2 - 5x - 1
= 2( x2 - 5/2x + 25/16 ) - 33/8
= 2( x - 5/4 )2 - 33/8 ≥ -33/8 ∀ x
Đẳng thức xảy ra <=> x - 5/4 = 0 => x = 5/4
Vậy GTNN của biểu thức = -33/8 <=> x = 5/4