K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2017

Xét: \(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\)

Thay thế \(x+y+z=1\)

\(\Leftrightarrow\frac{\left(x+y+z\right)^2-x^2}{x\left(x+y+z\right)+yz}+\frac{\left(x+y+z\right)^2-y^2}{y\left(x+y+z\right)+xz}+\frac{\left(x+y+z\right)^2-z^2}{z\left(x+y+z\right)+xy}\)

Áp dụng hằng đẳng thức hiệu 2 bình phương: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{x^2+xy+xz+yz}+\frac{\left(x+z\right)\left(x+2y+z\right)}{xy+y^2+yz+xz}+\frac{\left(x+y\right)\left(x+y+2z\right)}{xz+zy+z^2+xy}\)

\(\Leftrightarrow\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}+\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\left(x+y\right)\left(x+z\right)\le\left(\frac{2x+y+z}{2}\right)^2=\frac{\left(2x+y+z\right)^2}{4}\\\left(x+y\right)\left(y+z\right)\le\left(\frac{x+2y+z}{2}\right)^2=\frac{\left(x+2y+z\right)^2}{4}\\\left(x+z\right)\left(y+z\right)\le\left(\frac{x+y+2z}{2}\right)^2=\frac{\left(x+y+2z\right)^2}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{\left(y+z\right)\left(2x+y+z\right)}{\left(x+y\right)\left(x+z\right)}\ge\frac{4\left(y+z\right)\left(2x+y+z\right)}{\left(2x+y+z\right)^2}=\frac{4\left(y+z\right)}{2x+y+z}\\\frac{\left(x+z\right)\left(x+2y+z\right)}{\left(x+y\right)\left(y+z\right)}\ge\frac{4\left(x+z\right)\left(x+2y+z\right)}{\left(x+2y+z\right)^2}=\frac{4\left(x+z\right)}{x+2y+z}\\\frac{\left(x+y\right)\left(x+y+2z\right)}{\left(x+z\right)\left(y+z\right)}\ge\frac{4\left(x+y\right)\left(x+y+2z\right)}{\left(x+y+2z\right)^2}=\frac{4\left(x+y\right)}{x+y+2z}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{4\left(y+z\right)}{2x+y+z}+\frac{4\left(x+z\right)}{x+2y+z}+\frac{4\left(x+y\right)}{x+y+2z}\)

\(\Rightarrow VT\ge4\left(\frac{y+z}{2x+y+z}+\frac{x+z}{x+2y+z}+\frac{x+y}{x+y+2z}\right)\)

Ta có: \(x+y+z=1\)

\(\Rightarrow\left\{\begin{matrix}y+z=1-x\\x+z=1-y\\x+y=1-z\end{matrix}\right.\) ( 1 )

\(\Rightarrow\left\{\begin{matrix}2x+y+z=1+x\\x+2y+z=1+y\\x+y+2z=1+z\end{matrix}\right.\) ( 2 )

Từ ( 1 ) và ( 2 )

\(\Rightarrow VT\ge4\left(\frac{1-x}{1+x}+\frac{1-y}{1+y}+\frac{1-z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left(\frac{1+x-2x}{1+x}+\frac{1+y-2y}{1+y}+\frac{1+z-2z}{1+z}\right)\)

\(\Rightarrow VT\ge4\left[3-\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\right]\)

\(\Rightarrow VT\ge12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\)

Chứng minh rằng \(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Leftrightarrow4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\le6\)

\(\Leftrightarrow\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\le\frac{3}{2}\)

\(\Leftrightarrow\frac{x}{1+x}+\frac{y}{1+y}+\frac{z}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow\frac{1+x-1}{1+x}+\frac{1+y-1}{1+y}+\frac{1+z-1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow1-\frac{1}{1+x}+1-\frac{1}{1+y}+1-\frac{1}{1+z}\le\frac{3}{4}\)

\(\Leftrightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{\left(1+1+1\right)^2}{3+x+y+z}=\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le3-\frac{9}{4}\)

\(\Rightarrow3-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right)\le\frac{3}{4}\) ( đpcm )

\(12-4\left(\frac{2x}{1+x}+\frac{2y}{1+y}+\frac{2z}{1+z}\right)\ge6\)

\(\Rightarrow VT\ge6\)

\(\Leftrightarrow\)\(\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}\ge6\) ( đpcm )

AH
Akai Haruma
Giáo viên
23 tháng 2 2017

Cách khác:

\(A=\frac{1-x^2}{x+yz}+\frac{1-y^2}{y+xz}+\frac{1-z^2}{z+xy}=\frac{1-x^2}{x(x+y+z)+yz}+\frac{1-y^2}{y(x+y+z)+xz}+\frac{1-z^2}{z(x+y+z)+xy}\)

\(\Leftrightarrow A=\frac{1-x^2}{(x+y)(x+z)}+\frac{1-y^2}{(y+z)(y+x)}+\frac{1-z^2}{(z+x)(z+y)}=\frac{2(x+y+z)-[xy(x+y)+yz(y+z)+xz(x+z)]}{(x+y)(y+z)(x+z)}\)

\(A\geq 6\Leftrightarrow 2-[xy(x+y)+yz(y+z)+xz(x+z)]\ge 6(x+y)(y+z)(x+z)\)

\(\Leftrightarrow 2+9xyz\geq 7(x+y+z)(xy+yz+xz)\)

\(\Leftrightarrow 2+9xyz\geq 7(xy+yz+xz)\) \((\star)\)

Theo BĐT Schur bậc 3 kết hợp AM-GM:

\(xyz\geq (x+y-z)(y+z-x)(x+z-y)=(1-2x)(1-2y)(1-2z)\)

\(\Leftrightarrow 9xyz\geq 4(xy+yz+xz)-1\)

\(\Rightarrow 2+9(xy+yz+xz)\geq 1+4(xy+yz+xz)=(x+y+z)^2+4(xy+yz+xz)\)\(\geq 7(xy+yz+xz)\)

Do đó \((\star)\) được CM. Bài toán hoàn tất. Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{p-a}+\frac{1}{p-b}\geq \frac{4}{2p-a-b}=\frac{4}{c}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)

\(\frac{1}{p-b}+\frac{1}{p-c}\geq \frac{4}{2p-b-c}=\frac{4}{a}\)

Cộng theo vế và thu gọn ta được \(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\geq 2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có đpcm

Dấu bằng xảy ra khi $a=b=c$

5 tháng 3 2017

cậu giỏi quá !yeu

18 tháng 2 2017

Xét: \(\sqrt{\frac{a}{b+c+d}}=\frac{\sqrt{a}}{\sqrt{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)

\(\sqrt{\frac{b}{c+d+a}}=\frac{\sqrt{b}}{\sqrt{c+d+a}}=\frac{b}{\sqrt{b\left(c+d+a\right)}}\)

\(\sqrt{\frac{c}{d+a+b}}=\frac{\sqrt{c}}{\sqrt{d+a+b}}=\frac{c}{\sqrt{c\left(d+a+b\right)}}\)

\(\sqrt{\frac{d}{a+b+c}}=\frac{\sqrt{d}}{\sqrt{a+b+c}}=\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

\(\Rightarrow VT=\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\\\sqrt{b\left(c+d+a\right)}\le\frac{a+b+c+d}{2}\\\sqrt{c\left(d+a+b\right)}\le\frac{a+b+c+d}{2}\\\sqrt{d\left(a+b+c\right)}\le\frac{a+b+c+d}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\\\frac{b}{\sqrt{b\left(c+d+a\right)}}\ge\frac{2b}{a+b+c+d}\\\frac{c}{\sqrt{c\left(d+a+b\right)}}\ge\frac{2c}{a+b+c+d}\\\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge\frac{2d}{a+b+c+d}\end{matrix}\right.\)

\(\Rightarrow VT\ge\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}\)

\(\Rightarrow VT\ge\frac{2\left(a+b+c+d\right)}{a+b+c+d}\)

\(\Rightarrow VT\ge2\)

\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}+\frac{b}{\sqrt{b\left(c+d+a\right)}}+\frac{c}{\sqrt{c\left(d+a+b\right)}}+\frac{d}{\sqrt{d\left(a+b+c\right)}}\ge2\)

\(\Leftrightarrow\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{b}{c+d+a}}+\sqrt{\frac{c}{d+a+b}}+\sqrt{\frac{d}{a+b+c}}\ge2\) ( đpcm )

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Lời giải:

Áp dụng bất đẳng thức AM-GM:

\(\frac{b+c+d}{a}=\frac{b+c+d}{a}.1\leq \left(\frac{\frac{b+c+d}{a}+1}{2}\right)^2=\left(\frac{b+c+d+a}{2a}\right)^2\)

\(\sqrt{\frac{a}{b+c+d}}\geq \frac{2a}{a+b+c+d}\). Tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\geq \frac{2(a+b+c+d)}{a+b+c+d}=2\) (đpcm)

AH
Akai Haruma
Giáo viên
15 tháng 2 2017

Lời giải:

Ta có:

\(\text{VT}=\left ( a-\frac{ab^2}{1+b^2} \right )+\left ( b-\frac{bc^2}{1+c^2} \right )+\left ( c-\frac{ca^2}{1+a^2} \right )\)

\(\Leftrightarrow \text{VT}=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )=3-A\)

Xét $A$ , áp dụng bất đẳng thức AM-GM:

\(A\leq \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{2a}=\frac{1}{2}(ab+bc+ac)\)

Mặt khác, dễ thấy \(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\leq \frac{3}{2}\Rightarrow \text{VT}\geq 3-\frac{3}{2}=\frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

15 tháng 2 2017

Xét: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

\(\Leftrightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\)

Áp dụng bất đẳng thức Cauchy cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}1+b^2\ge2\sqrt{b^2}=2b\\1+c^2\ge2\sqrt{c^2}=2c\\1+a^2\ge2\sqrt{a^2}=2a\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{ab^2}{1+b^2}\le\frac{ab^2}{2b}=\frac{ab}{2}\\\frac{bc^2}{1+c^2}\le\frac{bc^2}{2c}=\frac{bc}{2}\\\frac{ca^2}{1+a^2}\le\frac{ca^2}{2a}=\frac{ac}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}=\frac{2a-ab}{2}\\b-\frac{bc^2}{1+c^2}\ge b-\frac{bc}{2}=\frac{2b-bc}{2}\\c-\frac{ca^2}{1+a^2}\ge c-\frac{ac}{2}=\frac{2c-ac}{2}\end{matrix}\right.\)

Cộng theo từng vế:

\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge\frac{2\left(a+b+c\right)-\left(ab+bc+ca\right)}{2}\)

\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge\frac{6-\left(ab+bc+ca\right)}{2}=3-\frac{ab+bc+ca}{2}\)

Xét: \(3-\frac{ab+bc+ca}{2}\)

Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow9\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow3\ge ab+bc+ca\)

\(\Rightarrow\frac{3}{2}\ge\frac{ab+bc+ca}{2}\)

\(\Rightarrow3-\frac{3}{2}\le3-\frac{ab+bc+ca}{2}\)

\(\Rightarrow\frac{3}{2}\le3-\frac{ab+bc+ca}{2}\)

\(a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge3-\frac{ab+bc+ca}{2}\)

\(\Rightarrow a-\frac{ab^2}{1+b^2}+b-\frac{bc^2}{1+c^2}+c-\frac{ca^2}{1+a^2}\ge\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\) ( đpcm )

14 tháng 2 2017

Ta có \(a+b+c\le\sqrt{3}\)

\(\Rightarrow\left(a+b+c\right)^2\le3\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\le1\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ac\)

\(\Rightarrow1\ge ab+bc+ac\)

\(\Rightarrow\left\{\begin{matrix}1+a^2\ge a^2+ab+bc+ac\\1+b^2\ge b^2+ab+bc+ac\\1+c^2\ge c^2+ab+bc+ac\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\sqrt{1+a^2}\ge\sqrt{a^2+ab+bc+ca}\\\sqrt{1+b^2}\ge\sqrt{b^2+ab+bc+ca}\\\sqrt{1+c^2}\ge\sqrt{c^2+ab+bc+ca}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{1+a^2}}\le\frac{a}{\sqrt{a^2+ab+bc+ac}}\\\frac{b}{\sqrt{1+b^2}}\le\frac{b}{\sqrt{b^2+ab+bc+ac}}\\\frac{c}{\sqrt{1+c^2}}\le\frac{c}{\sqrt{c^2+ab+bc+ac}}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a^2+ab+bc+ca}}+\frac{b}{\sqrt{b^2+ab+bc+ca}}+\frac{c}{\sqrt{c^2+ab+bc+ca}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{a\left(a+b\right)+c\left(a+b\right)}}+\frac{b}{\sqrt{b\left(b+a\right)+c\left(a+b\right)}}+\frac{c}{\sqrt{c\left(c+a\right)+b\left(c+a\right)}}\)

\(\Rightarrow\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Xét \(\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng bất đẳng thức Cauchy ngược dấu cho 2 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}\sqrt{\left(a+b\right)\left(a+c\right)}\ge\frac{2a+b+c}{2}\\\sqrt{\left(a+b\right)\left(b+c\right)}\ge\frac{a+2b+c}{2}\\\sqrt{\left(c+a\right)\left(c+b\right)}\ge\frac{a+b+2c}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{2a}{2b+b+c}\\\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{2b}{a+2b+c}\\\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{2c}{a+b+2c}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\)

Chứng minh rằng: \(2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Leftrightarrow\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\ge\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\) với a , b > 0

\(\Rightarrow\frac{a}{2a+b+c}=\frac{a}{a+c+a+b}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)

\(\Rightarrow\frac{b}{a+2b+c}=\frac{b}{a+b+b+c}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)

\(\Rightarrow\frac{c}{a+b+2c}=\frac{c}{a+c+b+c}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{b}{4\left(a+b\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{a}{4\left(a+b\right)}+\frac{b}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}+\frac{c}{4\left(a+c\right)}+\frac{b}{4\left(b+c\right)}+\frac{c}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\left(đpcm\right)\)

\(\Rightarrow2\left(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\right)\le\frac{3}{2}\)

\(\Rightarrow\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\le\frac{3}{2}\)

Vậy \(\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\le\frac{3}{2}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
14 tháng 2 2017

Lời giải khác:

Áp dụng bđt Cauchy-Schwarz:

\((a^2+1)(1+3)\geq (a+\sqrt{3})^2\)\(\Rightarrow \frac{a}{\sqrt{a^2+1}}\leq \frac{2a}{a+\sqrt{3}}\)

Thực hiện tương tự với các phân thức còn lại:

\(\Rightarrow \frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\leq 2\left ( \frac{a}{a+\sqrt{3}}+\frac{b}{b+\sqrt{3}}+\frac{c}{c+\sqrt{3}} \right )=2A\) $(1)$

Lại có:

\(\)\(A=\left ( 1-\frac{\sqrt{3}}{a+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{b+\sqrt{3}} \right )+\left ( 1-\frac{\sqrt{3}}{c+\sqrt{3}} \right )=3-\sqrt{3}\left ( \frac{1}{a+\sqrt{3}}+\frac{1}{b+\sqrt{3}}+\frac{1}{c+\sqrt{3}} \right )\)

Cauchy-Schwarz kết hợp với \(a+b+c\leq \sqrt{3}\):

\(A\leq 3-\frac{9\sqrt{3}}{a+b+c+3\sqrt{3}}\leq 3-\frac{9\sqrt{3}}{4\sqrt{3}}=\frac{3}{4}\) $(2)$

Từ \((1),(2)\Rightarrow \text{VT}\leq 2A\leq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

12 tháng 2 2017

A B C O P Q R H K

vì các đoạn thẳng trong bài hiển nhiên phải dương nên

áp dụng BĐT cauchy cho 3 số thực dương:

\(\sqrt{\frac{OA}{OP}}+\sqrt{\frac{OB}{OQ}}+\sqrt{\frac{OC}{OR}}\ge3\sqrt[3]{\sqrt{\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{OR}}}\)(1)

xét tích \(\frac{OA}{OP}.\frac{OB}{OQ}.\frac{OC}{OR}=\left(\frac{AP}{OP}-1\right)\left(\frac{BQ}{OQ}-1\right)\left(\frac{CR}{OR}-1\right)\)(2)

áp dụng hệ quả định lý tales:OK//AH(cùng vuông góc với BC)

\(\rightarrow\frac{AP}{OP}=\frac{AH}{OK}=\frac{S_{ABC}}{S_{BOC}}\)(2 tam giác chung cạnh đáy)

làm tương tự :\(\frac{BQ}{OQ}=\frac{S_{ABC}}{S_{AOC}}\);\(\frac{CR}{OR}=\frac{S_{ABC}}{S_{AOB}}\)

thế vào (2): \(\left(\frac{S_{ABC}}{S_{BOC}}-1\right)\left(\frac{S_{ABC}}{S_{AOC}}-1\right)\left(\frac{S_{ABC}}{S_{AOB}}-1\right)=\frac{\left(S_{AOB}+S_{AOC}\right)\left(S_{AOB}+S_{BOC}\right)\left(S_{AOC}+S_{BOC}\right)}{S_{AOB}.S_{BOC}.S_{AOC}}\)

để biểu thực gọn hơn ta đặt \(\left\{\begin{matrix}S_{AOB}=x\\S_{AOC}=y\\S_{BOC}=z\end{matrix}\right.\),biểu thức trở thành

\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

áp dụng BĐT cauchy cho 2 số dương:\(\left\{\begin{matrix}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ac}\end{matrix}\right.\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\)(3)

từ (1),(2) và (3):\(\sqrt{\frac{OA}{OP}}+\sqrt{\frac{OB}{OQ}}+\sqrt{\frac{OC}{OR}}\ge3\sqrt[3]{\sqrt{8}}=3\sqrt[3]{\left(\sqrt{2}\right)^3}=3\sqrt{2}\)

dấu = xảy ra khi:\(\left\{\begin{matrix}\frac{OA}{OP}=\frac{OB}{OQ}=\frac{OC}{OR}\\S_{AOB}=S_{BOC}=S_{COA}\end{matrix}\right.\)chứng tỏ O là trọng tâm của tam giác ABC

13 tháng 2 2017

thanks

10 tháng 2 2017

Xét: \(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\)

\(\Leftrightarrow\frac{\left(\sqrt{a^2+b^2}\right)^2}{a+b}+\frac{\left(\sqrt{b^2+c^2}\right)^2}{b+c}+\frac{\left(\sqrt{c^2+a^2}\right)^2}{c+a}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{\left(\sqrt{a^2+b^2}\right)^2}{a+b}+\frac{\left(\sqrt{b^2+c^2}\right)^2}{b+c}+\frac{\left(\sqrt{c^2+a^2}\right)^2}{c+a}\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a+b+c\right)}\)

Xét \(\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a+b+c\right)}\)

Áp dụng bất đẳng thức Mincopski

\(\Rightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\sqrt{\left(a+b+c\right)^2+\left(b+c+a\right)^2}\)

\(\Rightarrow\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2\ge\left[\sqrt{2\left(a+b+c\right)}\right]^2\)

\(\Rightarrow\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2\ge2\left(a+b+c\right)^2\)

\(\Rightarrow\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a+b+c\right)}\ge\frac{2\left(a+b+c\right)^2}{2\left(a+b+c\right)}=a+b+c\)

\(\frac{\left(\sqrt{a^2+b^2}\right)^2}{a+b}+\frac{\left(\sqrt{b^2+c^2}\right)^2}{b+c}+\frac{\left(\sqrt{c^2+a^2}\right)^2}{c+a}\ge\frac{\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)^2}{2\left(a+b+c\right)}\)

\(\Rightarrow\frac{\left(\sqrt{a^2+b^2}\right)^2}{a+b}+\frac{\left(\sqrt{b^2+c^2}\right)^2}{b+c}+\frac{\left(\sqrt{c^2+a^2}\right)^2}{c+a}\ge a+b+c\)

\(\Leftrightarrow\)\(\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\ge a+b+c\) ( đpcm )

10 tháng 2 2017

Bunyacopski

\(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\\ \) đẳng thức a=b

áp vào ba số hang Vế trái dpcm

9 tháng 2 2017

\(\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3zy+5xy}+\frac{z^4}{2z^2+3xz+5yz}\)

Áp dụng bất đẳng thức cộng mẫu số

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2x^2+2y^2+2z^2+8xy+8yz+8xz}\)

\(\Leftrightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Xét \(\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\left\{\begin{matrix}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\x^2+z^2\ge2\sqrt{x^2z^2}=2xz\end{matrix}\right.\)

Cộng từng vế:

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)

\(\Rightarrow xy+yz+xz\le x^2+y^2+z^2\)

\(\Rightarrow8\left(xy+yz+xz\right)\le8\left(x^2+y^2+z^2\right)\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{10}\)

Ta có: \(x^2+y^2+z^2\ge\frac{1}{3}\)

\(\Rightarrow\frac{x^2+y^2+z^2}{10}\ge\frac{1}{30}\)

\(\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\ge\frac{1}{30}\)

\(\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

\(\Rightarrow\frac{x^4}{2x^2+3xy+5xz}+\frac{y^4}{2y^2+3yz+5xy}+\frac{z^4}{2z^2+3xz+5yz}\ge\frac{1}{30}\)

\(\Leftrightarrow\frac{x^3}{2x+3y+5z}+\frac{y^3}{2y+3z+5x}+\frac{z^3}{2z+3x+5y}\ge\frac{1}{30}\) ( đpcm )

11 tháng 2 2017

bucminh chịu chết

9 tháng 2 2017

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{a^4}{a^3+a^2b+ab^2}+\frac{b^4}{b^3+b^2c+bc^2}+\frac{c^4}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

Áp dụng bất đẳng thức cộng mẫu số cho vế trái

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+a^2c}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^3+a^2b+a^2c\right)+\left(b^3+b^2c+ab^2\right)+\left(c^3+c^2a+bc^2\right)}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\frac{a^2+b^2+c^2}{a+b+c}\)

Chứng minh rằng: \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

Áp dụng bất đẳng thức Bunhiacopski cho 3 bộ số thực không âm

\(\Rightarrow3\left(a^2+b^2+c^2\right)=\left(1+1+1\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)( đpcm )

Vậy \(\frac{a^2+b^2+c^2}{a+b+c}\ge\frac{a+b+c}{3}\)

\(\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a^2+b^2+c^2}{a+b+c}\)

\(\Rightarrow\frac{\left(a^2\right)^2}{a^3+a^2b+ab^2}+\frac{\left(b^2\right)^2}{b^3+b^2c+bc^2}+\frac{\left(c^2\right)^2}{c^3+c^2a+a^2c}\ge\frac{a+b+c}{3}\)

\(\Leftrightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge\frac{a+b+c}{3}\) ( đpcm )

8 tháng 2 2017

Áp dụng bất đẳng thức Cauchy cho 3 bộ số thực không âm

\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Xét \(\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

Áp dụng bất đẳng thức Cauchy cho 3 bộ thực không âm

\(\left\{\begin{matrix}\sqrt[3]{abc}\le\frac{a+b+c}{3}\\\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)}{3}\end{matrix}\right.\)

Nhân từng vế:

\(\Rightarrow\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{2\left(a+b+c\right)^2}{9}\)

\(\Rightarrow\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge\frac{27}{2\left(a+b+c\right)^2}\)

\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{3}{\sqrt[3]{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(\Rightarrow\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(c+a\right)}\ge\frac{27}{2\left(a+b+c\right)^2}\) ( đpcm )