Bài học cùng chủ đề
- Tính tích phân bằng phương pháp đổi biến số dạng u = u(x)
- Tính tích phân bằng phương pháp đổi biến số dạng x= φ(t)
- Phương pháp tính tích phân từng phần
- Tính tích phân bằng phương pháp đổi biến số dạng u = u(x)
- Tính tích phân bằng phương pháp đổi biến số dạng x= φ(t)
- Phương pháp tính tích phân từng phần
- Phiếu bài tập tuần 19
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Phiếu bài tập tuần 19 SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Mệnh đề nào dưới đây đúng?
Biết rằng I=∫1ex(ln2x+3)lnxdx=21lnba, với a,b là các số nguyên dương và ba là phân số tối giản. Tổng a+b bằng
Cho tích phân I=∫02πesin2xsinxcos3xdx và t=sin2x. Mệnh đề nào sau đây đúng?
Cho ∫010f(x)dx=20. Giá trị của ∫02f(5x)dx bằng
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [1;3] và thỏa mãn f(1)=6,f(3)=10,∫13f(x)dx=16.
Đặt I=∫13xf′(x)dx, khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có đạo hàm f′(x) liên tục trên đoạn [0,1] và thỏa mãn f(1)=1, ∫01f(x)dx=4. Tính tích phân I=∫01f′(x)dx.
Cho f(x) là hàm số chẵn và thoả mãn ∫−60f(x)dx=4. Đặt I=∫−66f(x)dx, mệnh đề nào sau đây đúng?
Tích phân I=2π∫πxsinxdx bằng
Cho tích phân I=1∫3x2+31dx. Nếu đặt x=3tant thì I trở thành
Cho tích phân I=∫3232x3x2−1 và x=sint1. Mệnh đề nào dưới đây đúng?