Bài học cùng chủ đề
- Dấu của tam thức bậc hai
- Tam thức bậc hai
- Định lí về dấu của tam thức bậc hai
- Cách xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng định lí về dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng đồ thị hàm số
- Tam thức bậc hai và định lí về dấu của tam thức bậc hai
- Xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai
- Bài toán sử dụng định lí về dấu có chứa tham số
- Phiếu bài tập: Dấu của tam thức bậc hai
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Phiếu bài tập: Dấu của tam thức bậc hai SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x)=ax2+bx+c có đồ thị như hình dưới đây:
Khẳng định nào dưới đây là sai?
Cho bảng xét dấu của tam thức bậc hai y=f(x)=ax2+bx+c với a=0 như sau:
Tập hợp các giá trị của x để f(x)≥0 là
Tất cả các giá trị của tham số m để bất phương trình −x2+(2m−1)x+m<0 có tập nghiệm S=R là
Cho hàm số y=f(x)=−x2+1 có đồ thị như hình dưới đây:
Hoàn thành bảng xét dấu sau đây của f(x):
x | −∞ | +∞ | |||||||
−x2+1 |
Tam thức f(x)=(m2+2)x2−2(m+1)x+1 dương với mọi x khi
Số giá trị nguyên của x để tam thức f(x)=2x2−7x−9 nhận giá trị âm là
Tam thức bậc hai f(x)=x2+(5−1)x−5 nhận giá trị dương khi và chỉ khi
Tập nghiệm của bất phương trình 6x2+x−1≤0 là
Tập xác định D của hàm số y=(2−5)x2+(15−75)x+25−105 là
Số thực dương lớn nhất thỏa mãn x2−x−12≤0 là
Các giá trị của m để phương trình (m−5)x2−4mx+m−2=0 có nghiệm là
Tất cả các giá trị thực của tham số m để x2+2(m+1)x+9m−5=0 có hai nghiệm âm phân biệt là
Tam thức f(x)=mx2−mx+m+3 âm với mọi x khi
Giải bất phương trình x(x+5)≤2(x2+2).
Tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2+2(m−2)x−1≤0 có tập nghiệm là R là