Bài học cùng chủ đề
- Dấu của tam thức bậc hai
- Tam thức bậc hai
- Định lí về dấu của tam thức bậc hai
- Cách xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng định lí về dấu của tam thức bậc hai
- Giải bất phương trình bậc hai: sử dụng đồ thị hàm số
- Tam thức bậc hai và định lí về dấu của tam thức bậc hai
- Xét dấu của tam thức bậc hai
- Giải bất phương trình bậc hai
- Bài toán sử dụng định lí về dấu có chứa tham số
- Phiếu bài tập: Dấu của tam thức bậc hai
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Phiếu bài tập: Dấu của tam thức bậc hai SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho bảng xét dấu của tam thức bậc hai y=f(x)=ax2+bx+c với a=0 như sau:
Tập hợp các giá trị của x để f(x)≥0 là
Tam thức f(x)=3x2+2(2m−1)x+m+4 dương với mọi x khi
Cho bảng xét dấu của tam thức f(x)=ax2+bx+c với a=0:
Tập hợp tất cả các giá trị x để f(x)>0 là
Cho hàm số y=f(x)=−x2+1 có đồ thị như hình dưới đây:
Hoàn thành bảng xét dấu sau đây của f(x):
x | −∞ | +∞ | |||||||
−x2+1 |
Tam thức f(x)=−2x2+(m−2)x−m+4 không dương với mọi x khi
Tam thức bậc hai f(x)=x2+(1−3)x−8−53 luôn
Phương trình (m2−3m+2)x2−2m2x−5=0 có hai nghiệm trái dấu khi
Số thực dương lớn nhất thỏa mãn x2−x−12≤0 là
Bất phương trình x2−(m+2)x+m+2≤0 vô nghiệm khi và chỉ khi
Tất cả các giá trị thực của tham số m để bất phương trình −2x2+2(m−2)x+m−2<0 có nghiệm là
Phương trình (m−1)x2−2x+m+1=0 có hai nghiệm phân biệt khi
Phương trình mx2−2mx+4=0 vô nghiệm khi và chỉ khi
Tam thức f(x)=mx2−mx+m+3 âm với mọi x khi
Giải bất phương trình x(x+5)≤2(x2+2).
Tất cả các giá trị thực của tham số m để bất phương trình (2m2−3m−2)x2+2(m−2)x−1≤0 có tập nghiệm là R là