Bài học cùng chủ đề
- Một số công thức tính diện tích tam giác
- Giải tam giác và ứng dụng trong thực tế
- Giải tam giác
- Ứng dụng giải tam giác vào thực tế
- Diện tích tam giác
- Tính bán kính đường tròn ngoại tiếp và nội tiếp trong tam giác qua diện tích
- Bài tập tự luận (nâng cao)
- Phiếu bài tập: Diện tích tam giác
- Giải tam giác
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 2 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Tính bán kính đường tròn ngoại tiếp và nội tiếp trong tam giác qua diện tích SVIP
Áp dụng công thức Hê rông để tính diện tích. Áp dụng công thức S=4Rabc⇒R=4Sabc trong đó a, b, c là ba cạnh của tam giác và R là bán kính đường tròn ngoại tiếp.
Một tam giác có ba cạnh a = 3, b = 4, c = 5. Bán kính đường tròn ngoại tiếp R của tam giác bằng
Tam giác đều cạnh a nội tiếp trong đường tròn bán kính R. Khi đó bán kính R bằng
Cho tam giác ABC có AB=33,BC=63 và CA=9. Gọi D là trung điểm BC. Bán kính của đường tròn ngoại tiếp tam giác ABD là
Tam giác ABC có AB=15,AC=8,BAC=60o. Bán kính đường tròn nội tiếp r của tam giác bằng
Tam giác ABC có a=21,b=17,c=10. Bán kính của đường tròn nội tiếp tam giác đã cho là
Bán kính của đường tròn nội tiếp tam giác đều cạnh a là
Tam giác ABC vuông tại A có AB=6 cm, BC=10 cm. Bán kính của đường tròn nội tiếp tam giác đã cho là
Tam giác ABC vuông cân tại A, có AB=a. Bán kính của đường tròn nội tiếp tam giác đã cho là
Tam giác ABC vuông cân tại A và nội tiếp trong đường tròn tâm O bán kính R. Gọi r là bán kính đường tròn nội tiếp tam giác ABC. Khi đó tỉ số rR bằng
Bạn có thể đánh giá bài học này ở đây