Xyz OLM

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Xyz OLM
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

 

Ta giả sử 

TH1 : Chỉ có B nói sai ,

Ta thấy B,D không thể cùng là người thấp nhất 

=> Loại

TH2 : Chỉ có C nói sai 

Khi đó , sẽ có 2 khả năng xảy ra: hoặc C và A là người cao nhất , hoặc C và D là người thấp nhất (vô lý)

=> Loại 

TH3 : Chỉ có D nói sai 

Khi đó D cao hơn B hoặc C , mặt khác lời của B và C trong TH này là đúng nên khi D nói sai ta không thể tìm được người thấp nhất 

=> Loại

TH4 : Chỉ có A nói sai 

Khi đó ta dễ thấy A cao hơn C và D , do A không là người cao nhất nên người cao nhất là B

Vậy chỉ có TH4 là thỏa mãn yêu cầu bài toán 

=> D là người thấp nhất , A là người nói sai , Chiều cao 4 bạn chiều giảm dần là B,A,C,D 

a) \(A=\sqrt{18}.\sqrt{2}-\sqrt{48}:\sqrt{3}=\sqrt{18.2}-\sqrt{48:3}\)

\(=\sqrt{36}-\sqrt{16}=6-4=2\)

b) \(B=\dfrac{8}{\sqrt{5}-1}+\dfrac{8}{\sqrt{5}+1}=\dfrac{8\sqrt{5}+8+8\sqrt{5}-8}{\left(\sqrt{5}-1\right).\left(\sqrt{5}+1\right)}=\dfrac{16\sqrt{5}}{4}=4\sqrt{5}\)

Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)

Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)

=> A < 2

ĐKXĐ \(3x^2-5x+1\ge0;x^2-2\ge0;x^2-x-1\ge0\)

Ta có : \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3.\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\sqrt{3x^2-5x+1}-\sqrt{3\left(x^2-x-1\right)}=\sqrt{x^2-2}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\dfrac{3x^2-5x+1-3.\left(x^2-x-1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\dfrac{-2x+4}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=\dfrac{3x-6}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\dfrac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+4}}+\dfrac{2}{\sqrt{3x^2-5x+1}+\sqrt{3\left(x^2-x-1\right)}}=0\left(∗\right)\end{matrix}\right.\)

Xét phương trình (*) ta có VT > 0 \(\forall x\) mà VP = 0

nên (*) vô nghiệm

Vậy x = 2 là nghiệm phương trình 

Đặt n = 3k \(\left(k\inℕ\right)\)

Khi đó P = 9k2 + 3k + 1 = 3k(3k + 1) + 1 \(⋮̸3\)

=> \(P⋮̸9\)

Tương tự với n = 3k + 1

P = 9k2 + 9k + 3 = 9k(k + 1) + 3\(⋮̸9\)

Với n = 3k + 2 

P = 9k2 + 15k + 7 = 3k(3k + 5) + 7 \(⋮̸3\Leftrightarrow P⋮̸9\)

=> ĐPCM 

\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)

\(\Leftrightarrow x=\sqrt{5+\sqrt{13+x}}\) (\(x\ge0\))

\(\Leftrightarrow x^2=5+\sqrt{13+x}\)

\(\Leftrightarrow x^2-9=\sqrt{13+x}-4\)

\(\Leftrightarrow\left(x-3\right).\left(x+3\right)=\dfrac{x-3}{\sqrt{13+x}+4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=\dfrac{1}{\sqrt{x+13}+4}\left(∗\right)\end{matrix}\right.\)

Xét (*) ta có VT \(\ge3\) (1)

mà \(VP=\dfrac{1}{\sqrt{x+13}+4}\le\dfrac{1}{4}\) (2)

Từ (1) và (2) dễ thấy (*) vô nghiệm 

Hay x = 3

 

 

Với m = 1 

(d1) có dạng y = x + 3

(d2) có dạng y = -x + 3

Phương trình hoành độ giao điểm 

-x + 3 = x + 3

<=> x = 0

Với x = 0 <=> y = 3

Tọa độ giao điểm A(0;3) 

Bài này mình giải theo phương trình nghiệm nguyên : 

2x2 = y(y + 1) 

Nhưng mà giải không ra nghiệm :))

Tìm trên mạng được cái này. Hi vọng giúp được bạn : 

https://vi.wikipedia.org/wiki/Số_chính_phương_tam_giác

a) \(M=\left(\dfrac{3}{\sqrt{x}+3}+\dfrac{x+9}{x-9}\right):\left(\dfrac{2\sqrt{x}-5}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)

\(=\dfrac{3.\left(\sqrt{x}-3\right)+x+9}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{2\sqrt{x}-5-\left(\sqrt{x}-3\right)}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}-2}{\sqrt{x}.\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right).\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}.\left(\sqrt{x}-3\right)}{\sqrt{x}-2}=\dfrac{x}{\sqrt{x}-2}\)

b) \(M< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)

Kết hợp điều kiện ta được \(0< x< 4\) thì M < 0

c) Từ câu b ta có M < 0 \(\Leftrightarrow0< x< 4\)

nên \(x\inℤ\) để M nguyên âm <=> \(x\in\left\{1;2;3\right\}\)

Thay lần lượt các giá trị vào M được x = 1 thỏa 

d) \(M=\dfrac{x}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{4}{\sqrt{x}-2}=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\)

Vì x > 4 nên \(\sqrt{x}-2>0\)

Áp dụng BĐT Cauchy ta có 

\(M=\left(\sqrt{x}-2+\dfrac{4}{\sqrt{x}-2}\right)+4\ge2\sqrt{\left(\sqrt{x}-2\right).\dfrac{4}{\sqrt{x}-2}}+4=8\)

Dấu "=" xảy ra khi \(\sqrt{x}-2=\dfrac{4}{\sqrt{x}-2}\Leftrightarrow x=16\left(tm\right)\)

Tốc đọ trung bình trong 1 chu kì 

\(\left|v\right|=\dfrac{4A}{T}=\dfrac{2A\omega}{\pi}\)

Phương trình li độ vật : \(x=A.\cos\left(\omega t+\varphi\right)\) (*)

Phương trình vận tốc vật : \(v=-A.\omega.\sin\left(\omega t+\varphi\right)\) (**)

Từ (**) và (*) ta có \(\dfrac{x^2}{A^2}+\dfrac{v^2}{A^2.\omega^2}=1\Leftrightarrow v^2=\omega^2\left(A^2-x^2\right)\) 

Dựa vào đồ thị ta thấy thế năng tại  \(v_1=-9\pi\) (cm/s) bằng  

động năng tại \(v_2=12\pi\) (cm/s) 

Gọi \(x_1,x_2\)  lần lượt là li độ vật đạt vận tốc \(v_1,v_2\) 

Ta có : \(W_{t\left(x_1\right)}=W_{đ\left(x_2\right)}\)

\(\Leftrightarrow\dfrac{1}{2}mA^2.\omega^2-\dfrac{1}{2}m.\omega^2\left(A^2-x_1^2\right)=\dfrac{1}{2}m.\omega^2\left(A-x_2^2\right)\)

\(\Leftrightarrow x_1^2+x_2^2=A^2\)

Lại có \(v_1^2=\omega^2\left(A^2-x_1^2\right);v_2^2=\omega^2\left(A^2-x_2^2\right)\) 

Cộng vế với vế ta được \(v_1^2+v_2^2=\omega^2A^2=\left(15\pi\right)^2\Leftrightarrow A\omega=15\pi\)

\(\Rightarrow\left|v\right|=30\)(cm/s)