Nếu x^2 + y^2= 25 và x^2 - y^2 =7 thì giá trị của biểu thức x^4 +y^4 = ???
bạn nào làm nhanh đúng cho 5 tick
ok !!!!!@@@@@@@@###########$$$$$$$%%%%%%%%%%%^^^^^^^&&&&&&&******(((((())))
:v
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy:
\(\left(x+4\right)\left(x-4\right)=x\left(x-\frac{2}{3}\right)\)
\(\Rightarrow\left(x^2-4x\right)+\left(4x-16\right)=x^2-\frac{2}{3}x\)
\(\Rightarrow\left(x^2-16\right)-\left(4x-4x\right)=x^2-\frac{2}{3}x\)
\(\Rightarrow x^2-16-0=x^2-\frac{2}{3}x\)
\(\Rightarrow x^2-16=x^2-\frac{2}{3}x\)
\(\Rightarrow16=\frac{2}{3}x\) ( do có cùng hiệu và cùng số bị trừ )
\(\Rightarrow x=16:\frac{2}{3}\)
\(\Rightarrow x=24\)
Vậy x = 24
b.) x^3-x^2-2x=0
x(x^2-x-2)=0
x(x^2-2x+x-2)=0
x(x(x-2)+x-2)=0
x(x-2)(x+1)=0
suy ra x=0 hoặc x-2=0 hoặc x+1=0
vậy x=0 hoặc x=2 hoặc x=-1
hình như câu c đề phải là (x+4)/120 thì phải đó bạn
c.)(x+4)/120+(x+8)/116=(x+5)/119+(x+7)/117
(x+4)/120+(x+8)/116-(x+5)/119-(x+7)/117=0
(x+4)/120+1+(x+8)/116+1-(x+5)/119-1-(x+7)/117-1=0
(x+4)/120+1+(x+8)/116+1-((x+5)/119+1)-((x+7)/117+1)=0
(x+124)/120+(x+124)/116-(x+124)/119-(x+124)/117=0
(x+124)(1/120+1/116-1/119-1/117)=0
suy ra x+124=0
x=-124
x^2 - 4x = 0
x^2 - 4x + 4 - 4 = 0
( x - 2 )^2 - 4 = 0
( x - 2 )^2 = 4
x - 2 = [+4; -4]
Xét x - 2 = 4
x = 6
Xét x - 2 = -4
x = -2
Vậy x thuộc 6 ; -2
Đkxđ : \(x\ne3;-3\)
Ta có :
\(\frac{4x^2-24x+36}{x^2-9}\)
\(=\frac{4\left(x^2-6x+9\right)}{x^2-3^2}\)
\(=\frac{4\left(x^2-2.3.x+3^2\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{4\left(x-3\right)}{x+3}\)
Bạn tự phân tích nhân tử cái biểu thức A thành:
\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)
a) \(n^2\ge0\Rightarrow n^2+1\ge1>0\)
\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)=0\)<=> n-1=0 hoặc n=0 hoặc n+1=0
<=>n=1 hoặc n=0 hoặc n=-1
Vậy A=0 khi \(n\in\left\{-1;0;1\right\}\)
b) Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên trong tích này có ít nhất 1 thừa số chia hết chia hết cho 2 và 1 thừa số chia hết cho 3 (1)
Xét:
=>\(A=\left(5k+1-1\right)\left(5k+1\right)\left(5k+1+1\right)\left[\left(5k+1\right)^2+1\right]\)
\(=5k\left(5k+1\right)\left(5k+2\right)\left[\left(5k+1\right)^2+1\right]⋮5\)
=>\(A=\left(5k+2-1\right)\left(5k+2\right)\left(5k+2+1\right)\left[\left(5k+2\right)^2+1\right]\)
\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+4+1\right)\)
\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+5\right)\)
\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)5\left(5k^2+4k+1\right)⋮5\)
=>\(A=\left(5k+3-1\right)\left(5k+3\right)\left(5k+3+1\right)\left[\left(5k+3\right)^2+1\right]\)
\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+9+1\right)\)
\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+10\right)\)
\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)5\left(5k^2+6k+2\right)⋮5\)
=>\(A=\left(5k+4-1\right)\left(5k+4\right)\left(5k+4+1\right)\left[\left(5k+4\right)^2+1\right]\)
\(=\left(5k+3\right)\left(5k+4\right)\left(5k+5\right)\left[\left(5k+4\right)^2+1\right]\)
\(=\left(5k+3\right)\left(5k+4\right)5\left(k+1\right)\left[\left(5k+4\right)^2+1\right]⋮5\)
Vậy A chia hết cho 5 với mọi n thuộc Z (2)
Từ (1) và (2) và 2;3;5 là các số nguyên tố đôi một cùng nhau => A chia hết cho 2.3.5=30 (đpcm)
x^2+y^2=25(1)
x^2-y^2=7
cộng vế theo vế còn 2x^2=32
x^2=16
thế x^2=16 vào 1 ta có 16+y^2=25
y^2=9
x^4+y^4=(x^2)^2+(y^2)^2=16^2+9^2=337
x^2+y^2=25
x^2-y^2=7
=> 2.x^2=32
x^2=16
=> y^2=16-7=9
x^4+y^4=16^2+9^2=1296