K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

\(\sqrt{x^2-2x+2}=\sqrt{x^2-2x+1^2+1}=\sqrt{\left(x-1\right)^2+1}\)vì (x-1)\(^2\) luôn luôn \(\ge\)0 nên p nhỏ nhất khi 

(x-1)\(^2\) = 0 <=>  x=1                       vậy GTNN của \(p=1\)

7 tháng 7 2015

A B C D

Trước tiên ta chứng minh công thức sau:

\(\cot\frac{A}{2}=\frac{1+\cos A}{\sin A}\)

Xét ΔABC vuông tại A; CD là phân giác góc C
=> \(\cot ACD=\frac{AC}{AD}=\frac{BC}{BD}\text{ (do t/c phân giác) }=\frac{AC+BC}{AD+BD}=\frac{AC+BC}{AB}\)

\(=\frac{1+\frac{AC}{BC}}{\frac{AB}{BC}}=\frac{1+\cos C}{\sin C}\text{ (đpcm).}\)

\(\Rightarrow\cot\frac{A}{2}=\frac{1+\cos A}{\sin A}\text{ (đối với góc A nhọn)}\)

*Áp dụng vào bài, 

Ta có: M thuộc đường tròn đường kính AB => ΔMAB vuông tại M
\(\Rightarrow\cot\beta=\cot\frac{B}{2}=\frac{1+\cos B}{\sin B}=\frac{1+\frac{MB}{AB}}{\frac{MA}{AB}}=\frac{AB+y}{x}=\frac{2R+y}{x}\)

Tương tự: \(\cot\alpha=\frac{2R+x}{y}\)

\(\Rightarrow x\left(\cot\beta-1\right)+y\left(\cot\alpha-1\right)=x\left(\frac{2R+y}{x}-1\right)+y\left(\frac{2R+x}{y}-1\right)\)

\(=2R+y-x+2R+x-y=4R\)