Cho tam giác ABC cân tại A. Ở phía ngoài tam giác đó dựng các tam giác đều ABD và ACE.Đường thẳng song song với AD và AE cắt nhau tại M. Chứng minm rằng: Tam giác MBC đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề phải là x+y+z=36 mới đúng bạn nhé
\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)
\(\frac{x}{4}=3\Rightarrow x=3.4=12\)
\(\frac{y}{5}=3\Rightarrow y=3.5=15\)
\(\frac{z}{3}=3\Rightarrow z=3.3=9\)
Vậy x=12 ; y=15 và z=9
Đề nó cho sẵn rồi mà bát ku
Theo đề bài ta có :
\(3x=4y=5z\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{3}\)và \(x+y+z=36\)
Theo đề bài ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{4+5+3}=\frac{36}{12}=3\)
\(\Rightarrow\)\(x=3.4=12\)
\(\Rightarrow\)\(y=3.5=15\)
\(\Rightarrow\)\(z=3.3=9\)
(3x-2)5 = -243
<=> (3x-2)5 = (-5)5
<=> 3x-2= -5
<=> 3x =-5+2=-3
<=> x= -1
Vì mỗi đội phải đá với 9 đội còn lại cả đi và về là 2 trận nên mỗi đội phải đá :
9.2=18 (trận)
Chúc học tốt
Cậu vào câu hỏi tương tự đi,có đấy.Thật sự xin lỗi vì tớ ko muốn viết dài dòng.Câu hỏi của :dao ngoc linh nhi ấy
Chúc học tốt
Từ điểm O bất kì trong mặt phẳng, vẽ 6 đường thẳng song song với 6 đường thẳng đã cho
6 đường thẳng này tạo thành 12 góc đội một đối đỉnh không có điểm chung có tổng là 360 độ
Mỗi góc có số đo bằng với số đo của góc nhọn tạo bởi 2 trong 6 đường thẳng đã cho
Nếu trong 12 góc ấy không có góc nào lớn hơn 30 độ thì tổng của chúng nhỏ hơn 360 độ
Nếu trong 12 góc ấy không có góc nào nhỏ hơn 30 độ thì tổng của chúng lớn hơn 360 độ
Vậy tồn tại một trong 12 góc ấy có số đo không lớn hơn 30 độ và 1 góc có số đo không nhỏ hơn 30 độ => đpcm
(Hình tự vẽ nhé )
Ta có: Tg ABC cân tại A
=>\(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\left(2\right)\end{cases}}\)
Xét tg ABC có:
BD là tia phân giác của \(\widehat{ABC}\)=>\(\widehat{ABD}=\widehat{DBC}\)
CE là tia phân giác của \(\widehat{ACB}\)=>\(\widehat{ACE}=\widehat{ECB}\)
Lại có: \(\widehat{ABC}=\widehat{ACB}\)(theo (2))
=>\(\widehat{ACE}=\widehat{ABD}\)(3)
Xét tg ACE và tg ABD có:
AC=AB(theo(1))
\(\widehat{CAB}\): góc chung
\(\widehat{ACE}=\widehat{ABD}\)(theo (3))
=>Tg ABD=tg ACE(g.c.g)
=>AD=AE(2 cạnh tương ứng)
=>Tg AED cân tại A
Vậy tg AED cân tại A