Không thực hiện phép tính hãy chứng tỏ:
a.2022.2023.2024 chia hết cho 24
b.2079.17.13 chia hét cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không thực hiện phép tính hãy chứng tỏ:
a.2022.2023.2024 chia hết cho 24
b.2079.17.13 chia hét cho 3
2y - (1456 - 1459) = 2³
2y - (-3) = 8
2y + 3 = 8
2y = 8 - 3
2y = 5
y = 5/2
Số số hạng của F:
(218 - 3) : 5 + 1 = 44 (số)
⇒ F = (128 + 3) . 44 : 2 = 4862
⇒ F - 1 = 4862 - 1 = 4861
⇒ F - 1 không chia hết cho 2
a) Để \(10^{28}+8\) ⋮ 72 thì \(10^{28}+8\) ⋮ 9 và 8
Ta có: \(10^{28}=\overline{10...0}\) (28 số 0) \(\Rightarrow10^{28}+8=\overline{10...8}\)
Tổng các chữ số: \(1+0+...+0+8=9\) ⋮ 9
Mà: \(\left\{{}\begin{matrix}10^{28}⋮8\\8⋮8\end{matrix}\right.\Rightarrow10^{28}+8⋮8\)
⇒ \(10^{28}+8\) ⋮ 9 và 8
\(\Rightarrow10^{28}+8\) ⋮ 72 (đpcm)
b) Ta có: \(\left(ab+cd+eg\right)⋮11\)
\(\overline{abcdeg}=ab\cdot10000+cd\cdot100+eg=ab\cdot9999+cd\cdot99+ab+cd+eg=ab\cdot11\cdot109+cd\cdot11\cdot9+\left(ab+cd+eg\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ab\cdot11\cdot109⋮11\\cd\cdot11\cdot9⋮11\\\left(ab+cd+eg\right)⋮11\end{matrix}\right.\Rightarrow\overline{abcdeg}⋮11\)
Ta có abcdeg = ab.10000 + cd.100 + eg
=>abcdeg = ab.9999 + ab.1 + cd.99 + cd.1+eg
=>abcdeg = ab.11.909 + cd.11.9 + (ab +cd+eg)
=> 11.(ab.909 + cd.9) chia hết cho 11
Mà đầu bài cho : ab + cd + eg chia hết cho 11
Nên abcdeg chia hết cho 11
Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
\(S_2=1+\left(-3\right)+5+\left(-7\right)+...+1997+\left(-1999\right)\)
\(S_2=\left(1-3\right)+\left(5-7\right)+...+\left(1997-1999\right)\)
\(S_2=\left(-2\right)+\left(-2\right)+...+\left(-2\right)\)
Số lượng số hạng là: \(\left(1999-1\right):2+1=1000\) (số hạng)
Số lượng cặp là: \(1000:2=500\) (cặp)
\(S_2=500\cdot\left(-2\right)\)
\(S_2=-1000\)
a) \(S=5+5^2+...+5^{2006}\)
\(5S=5^2+5^3+...+5^{2007}\)
\(5S-S=5^2+5^3+5^4+...+5^{2007}-5-5^2-5^3-...-5^{2006}\)
\(4S=5^{2007}-5\)
\(S=\dfrac{5^{2007}-5}{4}\)
b) \(S=5+5^2+5^3+...+5^{2006}\)
\(S=\left(5+5^4\right)+\left(5^2+5^5\right)+...+\left(5^{2003}+5^{2006}\right)\)
\(S=5\cdot\left(1+5^3\right)+5^2\cdot\left(1+5^3\right)+...+5^{2003}\cdot\left(1+5^3\right)\)
\(S=\left(1+5^3\right)\cdot\left(5+5^2+...+5^{2003}\right)\)
\(S=126\cdot\left(5+5^2+...+5^{2003}\right)\) ⋮ 126
Gọi sau ít nhất số ngày ba bạn lại cùng trực là a(ngày,a thuộc N*)
Theo bài ra ta có:
a chia hết cho 5
a chia hết cho 10
a chia hết cho 8
=>a thuộc BCNN(5,10,8)
Ta có:
5=5
10=2x5
8=2^3
=>BCNN(5,10,8)=2^3X5=40
đều chia hết
a) Mình chưa biết:)))
b)Tính tổng các chữ số trong dãy(chỉ cần tính một số 2079 tại vì trong phép nhân chỉ cần một số chia hết cho số đấy thì nhân bao nhiêu thì cũng đều chia hết được vậy nên ta có:
2+0+7+9=18=> chia hết cho 3
=>2079.17.13 chia hết cho 3
Muốn được tích xanh quá:((