Cho tam giác PQR gọi M và N lần lượt là trung điểm của PQ và PR. Trên tia đối của tia MN lấy điểm E sao cho EM=MN
a/Tứ giác QMNR là hình gì? Vì sao
b/Chứng minh PE=MR
c/Tam giác PQR cần có điều kiện gì để tứ giác PREM là hình chữ nhật?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=a^4+6a^3+11a^2+6a=a\left(a^3+a^2+5a^2+5a+6a+6\right)\)
\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
suy ra \(A\)là tích của \(4\)số nguyên liên tiếp,
Do đó trong \(a,a+1,a+2,a+3\)có ít nhất \(1\)thừa số chia hết cho \(3\). \(1\)thừa số chia hết cho \(4\)và \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\).
Khi đó \(A\)chia hết cho \(3.4.2=24\).
\(x^3-4x^2+5x-2\)
\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(2x-2\right)\)
\(=\left(x-1\right).\left(x^2-3x+2\right)\)
\(=\left(x-1\right).[\left(x^2-x\right)-\left(2x-2\right)]\)
\(=\left(x-2\right).\left(x-1\right)^2\)
\(x^5+x+1\)
\(=x^5-x^2+x+1\)
\(=x^2.\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2.\left(x-1\right).\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)
\(x^3+5x^2+5x+1\)
\(=\left(x+1\right).\left(x^2-x+1\right)+5x.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2+4x+1\right)\)
\(x^2.\left(x^2+2y^2\right)-3y^4\)
\(=x^4+2x^2y^2-3y^4\)
\(=x^4+2x^2y^2+y^4-4y^4\)
\(=\left(x^2+y^2\right)-4y^4\)
\(=\left(x^2+y^2-2y^2\right).\left(x^2+y^2+2y^2\right)\)
\(=\left(x^2-y^2\right).\left(x^2+3y^2\right)\)
\(=\left(x-y\right).\left(x+y\right).\left(x^2+3y^2\right)\)
TL :
a) Xét ΔABCΔABC có EE là trung điểm của ACAC và MM là trung điểm của BCBC
⇒EM⇒EM là đường trung bình của ΔABCΔABC
⇒EM//AB⇒EM//AB và EM=AB2=42=2EM=AB2=42=2 cm