vừa gà,vừa chó
bó lại cho tròn đố ai giải được?
có 100 chân chẵn
tính gà chó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(x^2\left(x-2\right)+2-x=0\)
=>\(x^2\left(x-2\right)-\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x^2-1\right)=0\)
=>(x-2)(x+1)(x-1)=0
=>\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x-1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\\x=-1\\x=1\end{matrix}\right.\)
b: \(x^2-9x^3=x^2-9x\)
=>\(9x^3=9x\)
=>\(x^3=x\)
=>\(x^3-x=0\)
=>\(x\cdot\left(x^2-1\right)=0\)
=>x(x-1)(x+1)=0
=>\(\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
c: \(x\left(x+2\right)+x^2=-2x\)
=>\(x\left(x+2\right)+x^2+2x=0\)
=>2x(x+2)=0
=>x(x+2)=0
=>\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d: \(\left(x+1\right)\left(x^2+4\right)=x^2+x\)
=>\(\left(x+1\right)\left(x^2+4\right)-x\left(x+1\right)=0\)
=>\(\left(x+1\right)\left(x^2-x+4\right)=0\)
mà \(x^2-x+4=\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}\forall x\)
nên x+1=0
=>x=-1
10 con chó có số cái chân là:
4x10=40(cái chân)
Đáp số : 40 cái chân
Số cái chân 10 con chó có là:
10 x 4 = 40 (cái chân)
Đáp số: 40 cái chân.
#hoctot
Câu 3:
a: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
\(\widehat{EBF}\) chung
Do đó: ΔBEF~ΔBAC
b: Xét ΔEDC vuông tại D và ΔEBF vuông tại E có
\(\widehat{EDC}=\widehat{EBF}\left(=90^0-\widehat{ACB}\right)\)
Do đó: ΔEDC~ΔEBF
=>\(\dfrac{ED}{EB}=\dfrac{EC}{EF}\)
=>\(ED\cdot EF=EB\cdot EC\)
Câu 1:
a:
\(A=\dfrac{x^2-9}{x-3}=\dfrac{\left(x-3\right)\left(x+3\right)}{x-3}=x+3\)
Thay x=4 vào A, ta được:
A=4+3=7
Thay x=4 vào B, ta được:
\(B=\dfrac{3}{4-3}+\dfrac{2}{4+3}+\dfrac{4^2-5\cdot4-3}{4^2-9}\)
\(=3+\dfrac{2}{7}+\dfrac{-7}{7}=3+\dfrac{2}{7}-1=2+\dfrac{2}{7}=\dfrac{16}{7}\)
b: \(B=\dfrac{3}{x-3}+\dfrac{2}{x+3}+\dfrac{x^2-5x-3}{x^2-9}\)
\(=\dfrac{3}{x-3}+\dfrac{2}{x+3}+\dfrac{x^2-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3\left(x+3\right)+2\left(x-3\right)+x^2-5x-3}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x+9+2x-6+x^2-5x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}\)
c: \(A\cdot B=\left(x+3\right)\cdot\dfrac{x^2}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2}{x-3}\)
Câu 4:
a: Thay m=2 vào y=2x+m-1, ta được:
y=2x+2-1=2x+1
Vẽ đồ thị:
b: Thay x=1 và y=3 vào y=2x+m-1, ta được:
m-1+2=3
=>m+1=3
=>m=2
c: Thay y=0 vào y=x-1, ta được:
x-1=0
=>x=1
Thay x=1 và y=0 vào y=2x+m-1, ta được:
\(2\cdot1+m-1=0\)
=>m+1=0
=>m=-1
Câu 2:
a: \(3\left(x-1\right)-2x+4=4\left(x-2\right)\)
=>\(4x-8=3x-3-2x+4\)
=>\(4x-8=x+1\)
=>3x=9
=>x=3
b: \(\left(x-2\right)\left(3-4x\right)+x^2-4x+4=0\)
=>\(\left(x-2\right)\left(3-4x\right)+\left(x-2\right)^2=0\)
=>\(\left(x-2\right)\left(3-4x+x-2\right)=0\)
=>(x-2)(1-3x)=0
=>\(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
c: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x+2}{x-2}-\dfrac{x-2}{x+2}=\dfrac{4x^2}{x^2-4}\)
=>\(\dfrac{\left(x+2\right)^2-\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}\)
=>\(4x^2=x^2+4x+4-x^2+4x-4\)
=>\(4x^2=8x\)
=>\(x^2=2x\)
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(loại\right)\end{matrix}\right.\)
a: Xét tứ giác AHKM có \(\widehat{AHM}=\widehat{AKM}=90^0\)
nên AHKM là tứ giác nội tiếp
b: Xét (O) có
ΔMAN nội tiếp
MN là đường kính
Do đó: ΔMAN vuông tại A
Xét (O) có
\(\widehat{ABM}\) là góc nội tiếp chắn cung AM
\(\widehat{ANM}\) là góc nội tiếp chắn cung AM
Do đó: \(\widehat{ABM}=\widehat{ANM}\)
Xét ΔHBA vuông tại H và ΔANM vuông tại A có
\(\widehat{HBA}=\widehat{ANM}\)
Do đó: ΔHBA~ΔANM
c: Xét ΔHAB vuông tại H và ΔKMA vuông tại K có
\(\widehat{HAB}=\widehat{KMA}\)(ΔHBA~ΔANM)
Do đó: ΔHAB~ΔKMA
=>\(\dfrac{AH}{MK}=\dfrac{HB}{AK}\)
=>\(AH\cdot AK=MK\cdot HB\)
Ta biết:\(\dfrac{11}{17}\)<\(\dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\)(\(a,b\in N\))
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
⇒\(\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\Rightarrow a=8k++1\)
khi đó\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)⇒\(\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
11.(9k+5)<17.(8k+1)⇔k>129.(8k+1)<23.(9k+5)⇔k<4⇒1<k<4
⇒kϵ{2;3}
k=2=>a=17
b=23
k=3=>a=25
b=32
kết luận:(a,b) là:(17,23);(25,32)
\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-3m\right)\)
\(=4m^2-8m+4-4m^2+12m=4m+4\)
Để phương trình có hai nghiệm phân biệt thì 4m+4>0
=>m>-1
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)=2m-2\\x_1x_2=\dfrac{c}{a}=m^2-3m\end{matrix}\right.\)
\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=4\)
=>\(\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=4\)
=>\(\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=4\)
=>\(\left(2m-2\right)^2-2\left(m^2-3m\right)=4\left(m^2-3m\right)^2\)
=>\(4m^2-8m+4-2m^2+6m=4\left(m^2-3m\right)^2\)
=>\(2m^2-2m+4=4\left(m^2-3m\right)^2\)
=>\(2\left(m^4-6m^2+9\right)=m^2-m+2\)
=>\(2m^4-12m^2+18-m^2+m-2=0\)
=>\(2m^4-13m^2+m+16=0\)
=>\(m\in\left\{-2,27;-1,21;1,37;2,12\right\}\)
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
\(\widehat{KBN}\) là góc tạo bởi tiếp tuyến BK và dây cung BN
\(\widehat{BCN}\) là góc nội tiếp chắn cung BN
Do đó: \(\widehat{KBN}=\widehat{BCN}\)
Xét ΔKBN và ΔKCB có
\(\widehat{KBN}=\widehat{KCB}\)
\(\widehat{BKN}\) chung
Do đó: ΔKBN~ΔKCB
=>\(\dfrac{KB}{KC}=\dfrac{KN}{KB}\)
=>\(KB^2=KN\cdot KC\)
b: Ta có: \(KB^2=KN\cdot KC\)
KB=KA
Do đó: \(KA^2=KN\cdot KC\)
=>\(\dfrac{KA}{KN}=\dfrac{KC}{KA}\)
Xét ΔKAC và ΔKNA có
\(\dfrac{KA}{KN}=\dfrac{KC}{KA}\)
\(\widehat{AKC}\) chung
Do đó: ΔKAC~ΔKNA
=>\(\widehat{KCA}=\widehat{KAN}\)
Xét (O) có
\(\widehat{NCA}\) là góc tạo bởi tiếp tuyến CA và dây cung CN
\(\widehat{NMC}\) là góc nội tiếp chắn cung CN
Do đó: \(\widehat{NCA}=\widehat{NMC}\)
=>\(\widehat{NMC}=\widehat{NAK}\)
=>AB//CM
Dựa vào thông tin đã được cung cấp, chúng ta có thể chứng minh như sau:
a) Chứng minh: OA vuông góc BC tại H và BK^2=KN.KC
b) Chứng minh: MC//AB
Tóm lại, dựa vào thông tin đã cung cấp, chúng ta có thể chứng minh a) và b) theo yêu cầu của câu hỏi.
Ta giả sử 36 con đều là gà thì tổng số chân gà là:
2 x 36 = 72 (chân)
Như vậy số chân còn thiếu là:
100 - 72 = 28 (chân)
Mỗi con chó hơn mỗi con gà số chân là:
4 - 2 = 2 (chân)
Số con chó là:
28 : 2 = 14 (con)
Số con gà là:
36 - 14 = 22 (con)
Đáp số: 14 con chó và 22 con gà.
giả sử 36 con là con chó=> số chân là:36x4=144(cái chân)
sở dĩ ta bị thừa 44 cái chân do ta coi tất cả là chó
số gà là:44:=22(con)
số chó là:36-22=14(con)
easy