Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho a,b,c >0 chứng minh rằng
\(\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ac}}+\frac{c}{\sqrt{c^2+2ab}}\le\frac{a+b+c}{\sqrt{ab+bc+ac}}\)
Đặt \(A=\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\left(a,b,c>0\right)\)
Ta có:
\(A=\sqrt{1-\frac{2bc}{a^2+2bc}}+\sqrt{1-\frac{2ca}{b^2+2ca}}+\sqrt{1-\frac{2ab}{c^2+2ab}}\)
\(\le\sqrt{1-\frac{2bc}{a^2+b^2+c^2}}+\sqrt{1-\frac{2ca}{a^2+b^2+c^2}}\)\(+\sqrt{1-\frac{2ab}{a^2+b^2+c^2}}\).
\(=\frac{\sqrt{a^2+\left(b-c\right)^2}+\sqrt{b^2+\left(c-a\right)^2}+\sqrt{c^2+\left(a-b\right)^2}}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}}{\sqrt{a^2+b^2+c^2}}=\frac{a+b+c}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).
Dấu \("="\)xảy ra \(\Leftrightarrow a=b=c>0\).
Vậy với \(a,b,c>0\)thì :
\(\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).
nhờ các bn và các thầy cô hướng dẫn e làm bài 14,18 đây ạ
đi ngủ đê ae
Làm giúp mình câu này với
= Không biết nha bạn
e nhờ các bn hoặc các thầy cô giáo giúp e bài 7 vs ạ
HPT CÓ 2 NGHIỆM
Cho đường tròn (O) đường kính AB. Gọi K là điểm nằm giữa A và O và H là trung điểm của KA, I là trung điểm của KB. Kẻ dây CD vuông góc với AB tại H, dâu CB cắt đường tròn (I) đường kính KB tại E.a) Tứ giác ACKD là hình gì? Vì sao?b) Chứng minh ba điểm D, K, E thẳng hàngc) Chứng minh HE là tiếp tuyến của đường tròn (I).
các bạn ơi giúp mik cho mik lời giải nữa nhá thanks
Vẽ tam giác ABC vuông tại A , góc B = a biết : a) tan a = 2 , b)tan a bằng 3/5
Cho hai đường tròn (O;R) và (O';r) cắt nhau tại A và B (R>r). Gọi I là trung điểm của OO'. Kẻ đường thẳng vuông góc với IA tại A, đường thẳng này cắt các đường tròn (O;R) và (O';r) theo thứ tự tại C và D (khác A)
a) Chứng minh AC=AD
b) Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng KB vuông góc với AB
Cho hai đường tròn đồng tâm O. Dây AB của đường tròn lớn cắt đường tròn nhỏ ở C và D. Chứng minh rằng AC=BD
Đặt \(A=\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\left(a,b,c>0\right)\)
Ta có:
\(A=\sqrt{1-\frac{2bc}{a^2+2bc}}+\sqrt{1-\frac{2ca}{b^2+2ca}}+\sqrt{1-\frac{2ab}{c^2+2ab}}\)
\(\le\sqrt{1-\frac{2bc}{a^2+b^2+c^2}}+\sqrt{1-\frac{2ca}{a^2+b^2+c^2}}\)\(+\sqrt{1-\frac{2ab}{a^2+b^2+c^2}}\).
\(=\frac{\sqrt{a^2+\left(b-c\right)^2}+\sqrt{b^2+\left(c-a\right)^2}+\sqrt{c^2+\left(a-b\right)^2}}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}}{\sqrt{a^2+b^2+c^2}}=\frac{a+b+c}{\sqrt{a^2+b^2+c^2}}\)\(\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).
Dấu \("="\)xảy ra \(\Leftrightarrow a=b=c>0\).
Vậy với \(a,b,c>0\)thì :
\(\frac{a}{\sqrt{a^2+2bc}}+\frac{b}{\sqrt{b^2+2ca}}+\frac{c}{\sqrt{c^2+2ab}}\le\frac{a+b+c}{\sqrt{ab+bc+ca}}\).