Phân tích đa thức thành nhân tử
\(x^2+7x+6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x-2\)
\(=x^3-x^2+x^2-x+2x-2\)
\(=x^2\left(x-1\right)+x\left(x-1\right)+2\left(x-1\right)=\left(x-1\right)\left(x^2+x+2\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{15^2-9^2}=12\)
Xét ΔCHA vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔCHA~ΔCAB
=>\(\dfrac{AH}{AB}=\dfrac{CA}{CB}\)
=>\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot9}{15}=\dfrac{108}{15}=7,2\)
b: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
\(\widehat{ABD}=\widehat{HBI}\)
Do đó: ΔBAD~ΔBHI
c: Sửa đề: ΔAID cân
ΔBAD~ΔBHI
=>\(\widehat{BDA}=\widehat{BIH}\)
mà \(\widehat{BIH}=\widehat{AID}\)(hai góc đối đỉnh)
nên \(\widehat{AID}=\widehat{ADI}\)
=>ΔADI cân tại A
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
Ta có: BA=BE
=>B nằm trên đường trung trực của AE(2)
Từ (1),(2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE
Xét ΔBAE có
BD,AH là các đường cao
BD cắt AH tại I
Do đó: I là trực tâm của ΔBAE
=>EI\(\perp\)AB
=>EI//AC
`x^3 + 2x^2 + x + 2 = 0`
`=> (x^3 + 2x^2) + (x + 2) = 0`
`=> x^2 (x+2) + (x+2) = 0`
`=> (x^2 + 1)(x+2) = 0`
Mà `x^2 + 1 > 0`
`=> x+ 2 = 0`
`=> x = -2`
Vậy `x = - 2`
125 - 2 [ 56 - 48 : (15 - 7) ]
= 125 - 2 [ 56 - 48 : 8]
= 125 - 2 [ 56 - 6 ]
= 125 - 20. 50
= 125 - 100
= 25
\(\left(x-5\right)^2-x^2+10x-5\\ =\left(x^2-10x+25\right)-x^2+10x-5\\ =x^2-10x+25-x^2+10x-5\\ =\left(x^2-x^2\right)+\left(10x-10x\right)+\left(25-5\right)\\ =20\)
\(\left(x+4\right)\left(x-4\right)-\left(x-3\right)^2\)
\(=x^2-16-\left(x^2-6x+9\right)\)
\(=x^2-16-x^2+6x-9\)
=6x-25
\(x^2+7x+6\\ =\left(x^2+6x\right)+\left(x+6\right)\\ =x\left(x+6\right)+\left(x+6\right)\\ =\left(x+6\right)\left(x+1\right)\)
\(x^2\) + 7\(x\) + 6
= \(x^2\) + \(x\) + 6\(x\) + 6
= (\(x^2\) + \(x\)) + (6\(x\) + 6)
= \(x\)(\(x+1\)) + 6.(\(x\) + 1)
= (\(x\) + 1)(\(x\) + 6)