giúp mik với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+với \(x=0\Rightarrow y=1\) ko TM (DO \(x,y\inℕ^∗\) (bạn thay vào là tìm đc y nhé)(2)
+xét \(x\ne0;x,\inℕ^∗\Rightarrow x\ge1\)
do vậy nên ta có điều sau: \(x^6+2x^3+1< x^6+3x^3+1< x^6+4x^3+4\)
\(\Leftrightarrow\left(x^3+1\right)^2< y^4< \left(x^3+2\right)^2\)
do \(x^3+1\) và \(x^3+2\) là 2 số tự nhiên liên tiếp nên giữa bình phương của chúng sẽ ko có số ào cả vì vậy nếu \(x\ge1\) thì ko tìm đc y(2)
từ 1 và 2=> PT vô nghiệm
→Xét\( x ≥ 1\) thì:
\(x⁶ + 3x³ + 1 > x⁶ + 2x³ + 1 = (x³ + 1)² \)
\(và x⁶ + 3x³ + 1 < x⁶ + 4x³ + 4 = (x³ + 2)² \)
\(=> (x³ + 1)² < y⁴ = x⁶ + 3x³ + 1 < (x³ + 2)² \)
=> y⁴ nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nghiệm với \(x ≥ 1 \)
→Xét x = 0: tính được \(y = ± 1 => pt có 2 nº (0; -1) và (0;1) \)
→Xét\( x = -1: y⁴ = -1 (vô nº) \)
→Xét x ≤ -2: để dễ nhìn đặt \( z = -x => z ≥ 2 \)
pt trở thành: \(y⁴ = z⁶ - 3z³ + 1\)
Ta thấy: \(z⁶ - 3z³ + 1 < z⁶ - 2z³ + 1 (vì z ≥ 2) \)
\(=> z⁶ - 3z³ + 1 < (z³ - 1)² \)
và \((z⁶ - 3z³ + 1) - (z⁶ - 4z³ + 4) = z³ - 3 > 0 (do z³ ≥ 8) \)
\(=> z⁶ - 3z³ + 1 > z⁶ - 4z³ + 4 = (z³ - 2)² \)
Do đó: \((z³ - 2)² < y⁴ = z⁶ - 3z³ + 1 < (z³ - 1)² \)
=> \(y⁴ \)nằm giữa 2 số chính phương liên tiếp
=> pt đã cho vô nº với \(x ≤ -2 \)
Kết luận pt đã cho có 2 nº là \((0; -1) và (0;1) \)
dễ mà bạn
a)3x-18=0 à mà mik chx hc phương trình
3x=18+0 sorry bạn nhé
3x=18
x=18:3
x=6
vậy x=6
a)\(3x-18=0\)
\(\Leftrightarrow3x=18\)
\(\Leftrightarrow x=6\)
Vậy x=6
b)\(2x.\left(x-4\right)-3x+12=0\)
\(\Leftrightarrow2x.\left(x-4\right)-3\left(x-4\right)=0\)
\(\Leftrightarrow\left(2x-3\right).\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=4\end{cases}}}\)
Vậy .......
c)\(\frac{x-1}{2}-\frac{x+3}{3}=x+1\)
\(\Leftrightarrow6.\left(\frac{x-1}{2}-\frac{x+3}{3}\right)=6.\left(x+1\right)\)
\(\Leftrightarrow3.\left(x-1\right)-2.\left(x+3\right)=6x+6\)
\(\Leftrightarrow3x-3-2x-6=6x+6\)
\(\Leftrightarrow3x-2x-6x=6+3+6\)
\(\Leftrightarrow-5x=15\)
\(\Leftrightarrow x=-3\)
Vậy x= -3
d)\(\frac{x-3}{x+3}-\frac{5}{3-x}=\frac{30}{x^2-9}\)
\(\Leftrightarrow\frac{x-3}{x+3}-\frac{-5}{x-3}=\frac{30}{\left(x+3\right).\left(x-3\right)}\)
\(\Leftrightarrow\frac{\left(x-3\right).\left(x-3\right)}{\left(x+3\right).\left(x-3\right)}-\frac{-5.\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}=\frac{30}{\left(x-3\right).\left(x+3\right)}\)
\(\Leftrightarrow\left(x-3\right)^2-\left(-5\right).\left(x+3\right)=30\)
\(\Leftrightarrow x^2-6x+9-\left(-5x-15\right)=30\)
\(\Leftrightarrow x^2-6x+9+5x+15-30=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x.\left(x-3\right)+2.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}}\)
Vậy......
a) Xét tam giác \(AEF\)và tam giác \(MEC\):
\(\widehat{AEF}=\widehat{MEC}\)(đối đỉnh)
\(\widehat{EAF}=\widehat{EMC}\left(=90^o\right)\)
suy ra \(\Delta AEF~\Delta MEC\left(g.g\right)\).
b) Xét tam giác \(BAC\)và tam giác \(BMF\):
\(\widehat{B}\)chung
\(\widehat{BAC}=\widehat{BMF}\left(=90^o\right)\)
suy ra \(\Delta BAC~\Delta BMF\left(g.g\right)\).
suy ra \(\frac{BA}{BM}=\frac{BC}{BF}\)
\(\Rightarrow BA.BF=BM.BC\)
c) \(BA.BF=BM.BC\Rightarrow\frac{BA}{BC}=\frac{BM}{BF}\)
Xét tam giác \(BAM\)và tam giác \(BCF\):
\(\frac{BA}{BC}=\frac{BM}{BF}\)
\(\widehat{B}\)chung
suy ra \(\Delta BAM~\Delta BFC\left(c.g.c\right)\)
\(\Rightarrow\widehat{BMA}=\widehat{BFC}\).
d) Đặt \(\frac{BF}{BM}=\frac{BC}{BA}=k\)
suy ra \(\frac{S_{BAC}}{S_{ABM}}=k^2\)
mà \(S_{AMCF}=3S_{ABM}\Rightarrow S_{ABC}=4S_{ABM}\Rightarrow k=2\).
\(\frac{BC}{BA}=2\Rightarrow tanB=2\Rightarrow\widehat{B}=arctan\left(2\right).\)
`Answer:`
\(\frac{\left(m^2+1\right).x+1-2m^2}{x-5}\)\(=2m\left(ĐKXĐ:x\ne5\right)\)
`=>(m^2+1).x+1-2m^2=2m.(x-5)`
`<=>(m^2-2m+1).x=2m^2-10m-1`
`<=>(m-1)^2``x=2m^2-10m-1(1)`
Phương trình `(1)` có nghiệm duy nhất `<=>m\ne1`
Lúc đó nghiệm của phương trình `(1)` sẽ là \(x=\frac{2m^2-10m-1}{\left(m-1\right)^2}\)
Ta xét hiệu:
\(x-3=\frac{2m^2-10m-1}{\left(m-1\right)^2}-3\)
\(=\frac{2m^2-10m-1-3\left(m-1\right)^2}{\left(m-1\right)^2}\)
\(=\frac{-m^2-4m-4}{\left(m-1\right)^2}\)
\(=-\frac{\left(m+2\right)^2}{\left(m-1\right)^2}\)
\(\le0;\forall m\ne1\)
\(\Rightarrow x-3\le0;\forall m\ne1\)
\(\Rightarrow x\le3;\forall m\ne1\)
Dấu "=" xảy ra khi `m+2=0<=>m=-2`