K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm

5 tháng 4 2017

☺☻♥♦♣♠•◘○◙♂♀♪♫☼►◄↕‼¶§▬↨↑↓→←2◘↔▲▼ !"#◘%&'Ü)*+,-./0123;

5 tháng 4 2017

\(M=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(\frac{3x\sqrt{x}+2x}{2x\sqrt{x}+x+\sqrt{x}-1}\)

5 tháng 4 2017

e moi lop 6

9 tháng 4 2017

gọi số đó là abcd

theo đề ta có:

97 abcd= 61k +54

30 tháng 1 2019

Ta có:\(\left(a+b\right)^3=\overline{ab}^2\)là số chính phương nên \(a+b\)là số chính phương.

Đặt \(a+b=x^2\)với \(x\inℕ^∗\)

\(\Rightarrow\overline{ab}^2=x^6\)

\(\Rightarrow x^3=\overline{ab}< 100\)và \(\overline{ab}>9\)

\(\Rightarrow9< \overline{ab}< 100\)

\(\Rightarrow9< x^3< 100\)

\(\Rightarrow2< x< 5\)

\(\Rightarrow x=3\left(h\right)x=4\)

Với \(x=3\Rightarrow\overline{ab}^2=\left(a+b\right)^3=x^6=3^6=729=27^2=\left(2+7\right)^3\left(TM\right)\)

Với \(x=4\Rightarrow\overline{ab}^2=\left(a+b\right)^3=x^6=4^6=4096=64^2\ne\left(6+4\right)^3\left(KTM\right)\)

Vậy số cần tìm là 27.

P/S:\(\left(h\right)\)là hoặc

5 tháng 4 2017

rùi đó

10 tháng 5 2017

nick của bạn à