Tính
\(5^{n+1}-5^{n-1}=125^4.2^3.3\)
\(2^{2n-1}+2^{2n+2}=3.2^{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(2x+1\right)}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2x.\left(2x+1\right)}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2x}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x+1}=\dfrac{1}{20}\)
\(\Leftrightarrow\dfrac{1}{2x+1}=\dfrac{9}{20}\)
\(\Leftrightarrow2x+1=\dfrac{20}{9}\Leftrightarrow x=\dfrac{11}{18}\)
Em giải như XYZ olm em nhé
Sau đó em thêm vào lập luận sau:
\(x\) = \(\dfrac{11}{18}\)
Vì \(\in\) N*
Vậy \(x\in\) \(\varnothing\)
\(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\) +...+ \(\dfrac{2}{x\left(x+1\right)}\) = \(\dfrac{11}{40}\) (\(x\in\) N*)
\(\dfrac{1}{2}\).(\(\dfrac{1}{15}\)+\(\dfrac{1}{21}\)+\(\dfrac{1}{28}\)+\(\dfrac{1}{36}\)+.....+ \(\dfrac{2}{x\left(x+1\right)}\)) = \(\dfrac{11}{40}\) \(\times\) \(\dfrac{1}{2}\)
\(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\) + \(\dfrac{1}{7.8}\)+...+ \(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)+...+ \(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{5}\) - \(\dfrac{1}{x+1}\) = \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{5}\) - \(\dfrac{11}{80}\)
\(\dfrac{1}{x+1}\) = \(\dfrac{1}{16}\)
\(x\) + 1 = 16
\(x\) = 16 - 1
\(x\) = 15
- \(\dfrac{1}{4}\) = \(-\dfrac{1.3}{4.3}\) = \(\dfrac{-3}{12}\)
- \(\dfrac{1}{5}\) = \(\dfrac{-1.3}{3.5}\) = \(\dfrac{-3}{15}\)
Ba số hữu tỉ nằm giữa hai số hữu tỉ - \(\dfrac{1}{4}\); - \(\dfrac{1}{5}\) là ba số hữu tỉ nằm giữa hai số hữu tỉ: - \(\dfrac{3}{12}\) và - \(\dfrac{3}{15}\)
Đó lần lượt là các số hữu tỉ sau:
-\(\dfrac{3}{13};\) - \(\dfrac{3}{14}\);
- Nếu là số hữu tỉ dương :
\(m+3>0;m-2>0\Rightarrow m>-3;m>2\Rightarrow m>2\)
- Nếu là số hữu tỉ âm :
\(m+3< 0;m-2< 0\Rightarrow m< -3;m< 2\Rightarrow m< -3\)
Để 2 số hữu tỉ đều là dương :
\(\dfrac{m+2}{5}>0\Rightarrow m>-2\left(1\right)\)
\(\dfrac{m-5}{-6}>0\Rightarrow\dfrac{5-m}{6}>0\Rightarrow m< 5\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow-2< m< 5\Rightarrow m\in\left\{-1;0;1;2;3;4\right\}\left(m\in Z\right)\)
`@` `\text {Ans}`
`\downarrow`
`(x+2)^2 = 4`
`=> (x+2)^2 = (+-2)^2`
`=>`\(\left[{}\begin{matrix}x+2=2\\x+2=-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2-2\\x=-2-2\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy, `x \in {0; -4}.`
(\(x\) + 2)2 = 4
\(\left(x+2\right)^2\) = 22
\(\left[{}\begin{matrix}x+2=2\\x+2=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
vậy \(x\in\) \(\left\{-4;0\right\}\)
`@` `\text {Ans}`
`\downarrow`
\(\left(-5\right)^x=\dfrac{25^{10}}{\left(-5\right)^{17}}\)
`=>`\(\left(-5\right)^x=\dfrac{\left(5^2\right)^{10}}{\left(-5\right)^{17}}\)
`=>`\(\left(-5\right)^x=\dfrac{5^{20}}{\left(-5\right)^{17}}\)
`=>`\(\left(-5\right)^x=\left(-5\right)^3\Rightarrow x=3\)
Vậy, `x = 3.`
a, 5n+1 - 5n-1 = 1254.23.3
5n-1.(52 - 1) = 1254.24
5n-1.24 = 1254.24
5n-1 = 1254
5n-1 = (53)4
5n-1 = 512
n - 1 = 12
n = 12 + 1
n = 13
b,22n-1 + 22n+2 = 3.211
22n-1.(1 + 23) = 3.211
22n-1.9 = 3.211
22n-1 = 211: 3
22n = 212 : 3 (xem lại đề bài em nhá)