Các bạn ơi , giúp mình giải nhanh nhé . Mình đang gấp lắm
Cho P = 3x2 - 1/2 . Tìm max P
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
5552≡5(mod 10)
5553≡5( mod 10)
5555=5552.5553≡5.5≡5(mod 10)
---> 555777≡5(mod 10)
Suy ra:
333555777đồng dư với 3335
Do 3335=3332.3333≡3(mod 10)
Vậy chữ số tận cùng của 333555777là 3 (1)
Làm tương tự với 777555333có chữ số tận cùng là 7 (2)
Từ (1) và (2) suy ra 333555777+777555333có chữ số tận cùng là 0
Vậy 333555777+777555333chia hết cho 10 (đpcm)
tu ke hinh
a, xet tam giac ADE va tam giac ADB có : AD chung
AB = AE (Gt)
goc EAD = goc BAD do AD la phan giac cua goc BAC (gt)
=> tam giac ADE = tam giac ADB (c - g - c)
=> DE = DB (dn) (1)
goc AED = goc ABD (dn)
goc AED + goc DEC = 180 (kb)
goc ABD + goc DBK = 180 (kb)
=> goc DEC = goc DBK (2)
xet tam giac EDC va tam giac BDK co goc EDC = hoc BDK (doi dinh) ; (1); (2)
=> tam giac EDC = tam giac BDK (g - c - g)
=> DE = DB (dn)
b, tam giac EDC = tam giac BDK (Cau a)
=> DC = DK (dn)
=> tam giac DCK can tai D (dn)
=> goc DKC = goc DCK (dn)
c, AE = AB (gt)
EC = KB do tam giac EDC = tam giac BDK (cau a)
AE + EC = AC
AB + BK = AK
=> AC = AK
xet tam giac CAD va tam giac BAD co : AD chung
goc CAD = goc BAD (Cau a)
=> tam giac CAD = tam giac BAD (c - g - c)
=> goc CDA = goc ADK (dn)
goc CDA + goc ADK = 180 (kb)
=> goc CAD = 90
=> AD _|_ CK (dn)
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Kẻ AH vuông góc với BC.
Vì ABC là tam giác cân nên AH là trung tuyến ứng với BC.
=> HB = HC = BC/2 = 10/2=5 cm.
cos C = 5/13 => Góc C = 67 độ 38 phút.
Vì ABC là tam giác cân nên góc B = Góc C = 67 độ 23 phút.
=> Góc A = 180 - 2 . 67 độ 23 phút = 45 độ 14 phút
=> cos A = 119/169
Gọi số hs của 2 lớp 7A và 7B lần lượt là x, y (hs), x,y\(\in\)N*
vì số hs của 2 lp lần lượt tỉ lệ vs 6 và 7
\(\Rightarrow\)\(\frac{x}{6}\)=\(\frac{y}{7}\)(1)
mà 2 lp 7A và 7B cs tất cả 65 hs
\(\Rightarrow\)x+y=65
từ (1) và (2), áp dụng tính chất dãy tỉ số bằng nhau, ta cs:
\(\frac{x}{6}\)=\(\frac{y}{7}\)=\(\frac{x+y}{6+7}\)=\(\frac{65}{13}\)=5
\(\Rightarrow\)x=6.5=30 (hs) (TMĐK x,y \(\in\)N*)
Vậy lớp 7A cs 30 hs