Cho hình vuông ABCD và tứ giác MNPQ có 4 đỉnh thuộc 4 cạnh của hình vuông. Chứng minh rằng: Diện tích hình vuông ABCD = AC/4 ( MN+NP+QP+QM ).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét tam giác BDC:
Ta có: \(\hept{\begin{cases}gócD=90^0\\BM=MC\end{cases}\Rightarrow DM=\frac{1}{2}BC}\) (1)
Xét tam giác BEC:
Ta có: \(\hept{\begin{cases}gócE=90^0\\BM=MC\end{cases}\Rightarrow EM=\frac{1}{2}BC}\) (2)
Từ (1) và (2): \(\Rightarrow EM=MD=\frac{1}{2}BC\)
Suy ra: tam giác EMD là tam giác cân.
Lại có: N là trung điểm của tam giác can EMD.
Hay: N là đường cao của tam giác EMD
Vậy MN vuông góc với ED
b,Bó tay
Tam giác CDK đồng dạng Tam giác ABO ( g.g) => CK/BA = DK/OB => CK.OB=BA.DK (1) . Tam giác DBA có IK//BA => IK/BA = DK/BD => IK.BD=BA.DK (2) . Từ (1) (2) =>CK.OB=IK.BD => CK.OB=IK.2OB=> CK=2IK . Lập luận 1 tí rồi suy ra điều phải chứng minh
Ta tính BC = BH + CH = \(\frac{81}{41}+\frac{1600}{41}=\frac{1681}{41}\)
Theo hệ thức lượng trong tam giác vuông ta có AB2=BC.BH=\(\frac{1681}{41}.\frac{81}{41}=\frac{136161}{1681}=\frac{369^2}{41^2}\)
\(\Rightarrow\)AB =\(\sqrt{\frac{369^2}{41^2}}\)= \(\frac{369}{41}\)
Tương tự AC2 = BC . CH =\(\frac{1681}{41}.\frac{1600}{41}=\frac{2689600}{1681}=\frac{1640^2}{41^2}\)
\(\Rightarrow\)AC =\(\sqrt{\frac{1640^2}{41^2}}\)=\(\frac{1640}{41}\)