K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

Ta có: A=x2+y2=1-2xy

Vì x+y=1 => x=1-y

Khi đó A=1-2(1-y)y

=1-2y+2y2

=\(2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}\)

=\(2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\)

Vif \(2\left(y-\frac{1}{2}\right)^2\ge0\Rightarrow A=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra khi y=1/2 <=> x=1/2

Vậy Amin=1/2 khi x=y=1/2

26 tháng 6 2018

A B C D H

OK Nhìn hình hiểu nhé. Đầu tiên lấy giao điểm H của AC và BD.
Xét tam giác AHB có AH+HB > AB
      tam giác DHC có DH+HC > CD (cả hai cứ ghi là do bất đẳng thức tam giác)
Sau đó cộng vào suy ra đc AH+HB+DH+HC > AB+CD
Mà AH+HB+DH+HC = AC+BD >> ĐPCM ( ez game :v )

26 tháng 6 2018

A B C H K 60

a) Xét \(\Delta ABC\)đều có H là chân đường vuông góc hạ tự B xuống cạnh đáy AC

\(\Rightarrow\)H cũng là chân đường trung tuyến hạ từ B xuống đáy AC

\(\Rightarrow AH=HC\)

Tương tự  \(\Rightarrow AK=KB\)

\(\Rightarrow\)HK là đường trung bính \(\Delta ABC\)

\(\Rightarrow HK//BC\)\(\Rightarrow\)HKCB là hình thang ( 1 )

Lại có  \(\Delta ABC\)đều

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\left(=60^o\right)\)( 2 )

Từ (1) và (2) \(\Rightarrow\)BCHK là hình thang cân

b) Xét  \(\Delta ABC\)đều  \(\Rightarrow AB=AC=BC=\frac{24}{3}=8\left(cm\right)\)

Ta có  \(AK=\frac{1}{2}AB;AH=\frac{1}{2}AC\) 

Mà AB = AC  \(\Rightarrow AK=AH\)

Lại có  \(\widehat{KAH}=60^o\)

\(\Rightarrow\Delta AHK\)đều 

Mà  \(AK=\frac{1}{2}AB\Rightarrow AK=\frac{1}{2}\times8=4\left(cm\right)\)

\(\Rightarrow AK=AH=HK=4\left(cm\right)\)

\(C_{BCHK}=KH+HC+BC+BK\)

\(\Leftrightarrow C_{BCHK}=KH+AH+BC+AK\)

\(\Leftrightarrow C_{BCHK}=4+4+8+4\)

\(\Leftrightarrow C_{BCHK}=20\left(cm\right)\)

Vậy ...

26 tháng 6 2018

Đặt \(t=\frac{1}{x+10}\Rightarrow x=\frac{1}{t}-10\)

Ta có: \(P=\frac{x}{\left(x+10\right)^2}=x\cdot\frac{1}{\left(x+10\right)^2}=\left(\frac{1}{t}-10\right)t^2=-10t^2+t\)

\(=-10\left(t^2-2t\cdot\frac{1}{20}t+\frac{1}{400}\right)+\frac{1}{40}\)

\(=-10\left(t-\frac{1}{10}\right)^2+\frac{1}{40}\)

Vì \(\left(t-\frac{1}{10}\right)^2\ge0\Rightarrow-10\left(t-\frac{1}{10}\right)^2\le0\Rightarrow P=-10\left(t-\frac{1}{10}\right)^2+\frac{1}{40}\le\frac{1}{40}\)

Dấu "=" xảy ra khi \(t-\frac{1}{10}=0\Leftrightarrow t=\frac{1}{10}\Leftrightarrow x=0\)

Vậy \(B_{max}=\frac{1}{40}\) khi x = 0

26 tháng 6 2018

Làm lại 

Đặt \(t=\frac{1}{x+10}\Rightarrow x=\frac{1}{t}-10\)

Khi đó \(P=\left(\frac{1}{t}-10\right)t^2=-10t^2+t=-10\left(t^2-2t\cdot\frac{1}{20}+\frac{1}{40}\right)+\frac{1}{40}\)

\(=-10\left(t-\frac{1}{20}\right)^2+\frac{1}{40}\le\frac{1}{40}\)

Dấu "=" xảy ra khi \(t=\frac{1}{20}\Leftrightarrow x=10\)

Vậy Bmax=1/40 khi x=10