K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

a, Xét △ABM và △NBM 

Có: AB = NB (gt)

    ABM = NBM (gt)

  BM là cạnh chung

=> △ABM = △NBM (c.g.c)

b, Xét △NBH và △ABH

Có: NB = AB (gt)

    NBH = ABH (gt)

   BH là cạnh chung

=> △NBH = △ABH (c.g.c)

=> NH = AH (2 cạnh tương ứng)

c, Vì △NBH = △ABH (cmt)

=> NHB = AHB (2 góc tương ứng)

Mà NHB + AHB = 180o (2 góc kề bù)

=> NHB = AHB = 180o : 2 = 90o

=> HB ⊥ AN => BM ⊥ HN

Mà CK ⊥ BM (gt)

=> CK // HN (từ vuông góc đến song song)

25 tháng 2 2020

Vì a, b,c là độ dài ba cạnh của một tam giác

=> \(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)(bđt)

=>\(\frac{a}{b}\)\(< \frac{a+m}{b+m}\)\(\left(\frac{a}{b}< 1;a,b,m>0\right)\)

=> \(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)

làm tương tự 2 cái còn lại

cộng vế đẳng thức trên ta đc :

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< \)\(\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

=>\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}< 2\)

=> đpcm

25 tháng 2 2020

nêu 10 từ ghép và 10 từ láy

26 tháng 2 2020

tra loi giup mk nhanh nhe

25 tháng 2 2020

025888887410258

25 tháng 2 2020

a, Xét △ACK và △ABK

Có: AC = AB (gt)

       CK = BK (gt)

    AK là cạnh chung

=> △ACK = △ABK (c.c.c)

b, Vì △ACK = △ABK (cmt)

=> AKC = AKB (2 góc tương ứng)

Mà AKC + AKB = 180o (2 góc kề bù)

=> AKC = AKB = 180o : 2 = 90o

=> AK ⊥ BC

Bài 1:1) Tìm x, biết: \(4\frac{5}{9}\): \(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\): \(\left(-21\frac{1}{2}\right)\)2) Tính giá trị của biểu thức:\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 03) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).Bài 2:a) Tìm x,...
Đọc tiếp

Bài 1:

1) Tìm x, biết: \(4\frac{5}{9}\)\(2\frac{5}{18}\)- 7 < x < \(\left(3\frac{1}{5}:3,2+4,5.1\frac{31}{45}\right)\)\(\left(-21\frac{1}{2}\right)\)

2) Tính giá trị của biểu thức:

\(B=2x^2-5y^2+2014\)biết \(\left(x+2y^2\right)\)+ 2016 . | y + 1 | = 0

3) Cho x, y, z \(\ne\)0 và x - y - z = 0. Tính C = \(\left(1-\frac{z}{x}\right)^3\)\(\left(1-\frac{x}{y}\right)^3\)\(\left(1-\frac{y}{z}\right)^3\).

Bài 2:

a) Tìm x, biết: \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x+\frac{1}{20}\right|\)+ ........ + \(\left|x+\frac{1}{110}\right|=11x\)

b) Ba phân số có tổng bằng \(\frac{213}{70}\), các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.

Bài 3: Cho các đa thức:

\(f\left(x\right)\)\(3x^4+2x^3-5x^2+7x-3\)và \(g\left(x\right)=x^4+6x^3-15x^2-6x-9\)

a) Tìm đa thức \(h\left(x\right)=3f\left(x\right)-g\left(x\right)\)

b) Tìm nghiệm của đa thức \(h\left(x\right)\).

Bài 4:

a) Tìm x, y, z biết: \(\frac{3x}{8}=\frac{y}{4}=\frac{3z}{16}\)và \(2x^2+2y^2-z^2=10\)

b) Tìm số tự nhiên a nhỏ nhất khác 0 sao cho khi chia a cho \(\frac{8}{9}\)và khi chia a cho \(\frac{12}{17}\)đều được kết quả là số tự nhiên.

Bài 5: Cho \(\Delta ABC\)vuông tại A, ( AB < AC ). Gọi M là trung điểm của BC, từ M kẻ đường vuông góc với tia phân giác của góc BAC tại I, cắt AB và AC lần lượt tại D, E. Từ B kẻ đường thẳng song song với AC cắt DE tại K.

a) Tính góc BKD.

b) Chứng minh rằng: \(AE=\frac{AB+AC}{2}\).

c) Kẻ AH vuông góc với BC. Biết BH = 18 cm, CH = 32 cm. Tính độ dài AB và AC.

d) Nếu trên hình vẽ so với thực tế có tỉ lệ xích là 1 : 100000. Khi đặt tại H một máy phát sóng truyền thanh có bán kính hoạt động 30 km thì các thành phố tại địa điểm A và C có nhận được tín hiệu không ? Vì sao ?

0
25 tháng 2 2020

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)\(\Rightarrow\frac{y+z}{x}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{y+z+z+x+x+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Do đó:  +) \(\frac{y+z}{x}=2\)\(\Rightarrow y+z=2x\)

+) \(\frac{z+x}{y}=2\)\(\Rightarrow z+x=2y\)

+) \(\frac{x+y}{z}=2\)\(\Rightarrow x+y=2z\)

Ta có: \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{y+x}{y}.\frac{z+y}{z}.\frac{x+z}{x}=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=2.2.2=8\)