K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

\(=\left(\sqrt{11}+7\right)\sqrt{60-2.7\sqrt{11}}.\)

\(=\left(\sqrt{11}+7\right)\sqrt{\left(7-\sqrt{11}\right)^2}.\)

\(=\left(\sqrt{11}+7\right)\left(7-\sqrt{11}\right)=49-11=38.\)

10 tháng 7 2017

Ta có:

\(\frac{1}{2a+3b+3c}=\frac{1}{\left(a+b\right)+\left(a+c\right)+\left(b+c\right)+\left(b+c\right)}\)

\(\le\frac{1}{16}.\left(\frac{1}{a+b}+\frac{1}{c+a}+\frac{2}{b+c}\right)\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{3a+2b+3c}\le\frac{1}{16}.\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{2}{c+a}\right)\left(2\right)\\\frac{1}{3a+3b+2c}\le\frac{1}{16}.\left(\frac{1}{c+a}+\frac{1}{b+c}+\frac{2}{a+b}\right)\left(3\right)\end{cases}}\)

Từ (1), (2), (3) \(\Rightarrow P\le\frac{1}{16}.\left(\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\right)\)

\(=\frac{1}{4}.2017=\frac{2017}{4}\)

đề thi vào lớp 10 năm nay của tỉnh thanh hóa

10 tháng 7 2017

Áp dụng BĐT cauchy-schwarz :

\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)

\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)

Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)

nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)

Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)

\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)

do đó \(VT\ge\frac{1}{3}\)

Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)

10 tháng 7 2017

AM-GM thôi :))

từ giả thiết :\(\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-1}}=\frac{x_n}{1+x_n}\)

Áp dụng BĐT AM-GM: \(\frac{x_n}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_{n-1}\right)}}\)

từ giả thiết ta cũng có: \(\frac{x_{n-1}}{1+x_{n-1}}=\frac{1}{1+x_1}+\frac{1}{1+x_2}+...+\frac{1}{1+x_{n-2}}+\frac{1}{1+x_n}\ge\left(n-1\right)\sqrt[n-1]{\frac{1}{\left(1+x_1\right)\left(1+x_2\right)...\left(1+x_{n-2}\right)\left(1+x_n\right)}}\)

cứ như thế,chuyễn 1 hạng tử từ vế trái sang vế phải, ta được n bất đẳng thức 

Nhân chúng lại với nhau: \(\frac{x_1.x_2...x_n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\ge\frac{\left(n-1\right)^n}{\left(1+x_1\right)\left(1+x_2\right)..\left(1+x_n\right)}\)

do đó \(x_1.x_2.x_3...x_n\ge\left(n-1\right)^n\)

P/s: Nếu thắc mắc vì sao nó hết căn,để ý rằng nhân tử \(x_n\)xuất hiện (n-1) lần , nó chỉ không xuất hiện ở BĐT thứ 2 ở trên . căn (n-1) ắt sẽ hết 

29 tháng 7 2017

bạn tự ghi dk nha

\(B=\frac{1+\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1-a}+1\right)}+\frac{1-\sqrt{1+a}}{\sqrt{1+a}\left(\sqrt{1+a}-1\right)}+\frac{1}{\sqrt{1+a}}\)

\(B=\frac{1}{\sqrt{a-1}}-\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{1+a}}\)

\(B=\frac{1}{\sqrt{a-1}}\)

vì \(\sqrt{a-1}>0\)không có dấu = vì mẫu khác 0

\(\Rightarrow\frac{1}{\sqrt{a-1}}>0\)

đpcm