Phan tich than nhan tu
A= x4 - 8x + 63
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x8 + x4 + 1. = ( x8+ 2x4 +1 ) - x4. = (x4 + 1)2 - x4. = ( x4 - x2 + 1)(x4+x2 +1). =( x4 - x2 + 1)(x4+2x2 -x2+1). = ( x4 - x2 + 1)[( x2+1)2-x2]. =( x4 - x2 + 1)(x2+1-x2)(x2+1+x2). =( x4 - x2 + 1).2x2.
bài 113 nâng cao và các chuyên đề toán 8 đại số (Vũ Dương Thụy -Nguyễn Ngọc Đạm)
a) Dex dàng chứng minh \(\Delta BID\infty BHA\left(g-g\right)\Rightarrow\frac{ID}{AH}=\frac{BD}{AB}\)
mà AD là phân giác góc BAC =>\(\frac{BD}{AB}=\frac{CD}{AC}=\frac{BD+CD}{AB+AC}=\frac{BC}{AB+AC}\)
=>\(\frac{DI}{AH}=\frac{BC}{AB+AC}\left(ĐPCM\right)\)
b) cái ý này t chỉ bt dùng cách lớp 9 thôi, nhưng nếu bạn muốn xem lg kiểu lớp 9 thì xem bài 46 nâng cao phát triến toán 9 tập 1
( mà đề bài sai hay sao ý, phải là =(AB/BD)^2 chứ nhỉ !!
c)t nghĩ áp dụng câu b
^_^
Áp dụng bất đẳng thức bu nhi a, ta có
\(\left(a^3+b^3+c^3\right)\left(a+b+c\right)\ge\left(a^2+b^2+c^2\right)^2\ge\frac{1}{9}\left(a+b+c\right)^4\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge\frac{1}{9}\left(a+b+c\right)^2\)
theo giả thiết,m ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le3\)
mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\Rightarrow3\ge\frac{9}{a+b+c}\Rightarrow a+b+c\ge3\)
=>\(\frac{a^3+b^3+c^3}{a+b+c}\ge1\)
dấu bẳng xảy ra <=>a=b=c=1
nhok cho chị mượn chõ chút
Bạn tự vẽ hình nhé!
Kẻ LH vuông góc với AB tại H
dễ dàng có \(\Delta KHL=\Delta MAK\left(ch-gn\right)\)
=>AK=HL
đặt AB=a,AK=x =>AK=HL=BH=x => HK=\(a-2x\)
ta có \(S_{ABC}=\frac{a^2}{2}\) ;\(S_{KML}=\frac{KL^2}{2}=\frac{HK^2+BH^2}{2}=\frac{\left(a-2x\right)^2+x^2}{2}\)
đến đây là tìm min của pt bậc 2 là sẽ ra
ta có A=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
ta có \(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+...=\frac{1}{a^2+b^2+c^2}+\frac{\frac{2}{3}}{2ab}+...\ge\frac{\left(1+3.\sqrt{\frac{2}{3}}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=....\)
đến đây thì dễ rồi, cái kia cũng svacxơ và chú ý ab+bc+ca<=(a+b+c)^2/3
mượn chỗ nhok chút!
Áp dụng bđt bu nhi a, ta có
\(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)
mà \(\sqrt{2\left(x-y\right)^2+10x-6y+8}=\sqrt{2\left(x^2-2xy+y^2+5x-3y+4\right)}\)
=\(\sqrt{2\left(x-y+2\right)^2+2\left(x+y\right)}\ge\sqrt{2\left(x+y\right)}\)
=>VT<=VP
dấu = xảy ra <=> y=x+2
với x=y-2, thay vào A, ta có
A=\(x^4+\left(x+2\right)^2-5\left(x+x+2\right)+2020=x^4+x^2+4x+4-10x-10+2020\)
=\(x^4+x^2-6x+2014=x^4-2x^2+1+3\left(x^2-2x+1\right)+2010\)
=\(\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)
dấu = xảy ra <=> x=1 và y=3
\(\left(\frac{2x^2+1}{x^2-1}-\frac{1}{x-1}\right):\left(1-\frac{x^2+4}{x^2+x+1}\right)\)
\(=\left[\frac{2x^2+1}{\left(x-1\right)\left(x+1\right)}-\frac{x+1}{\left(x-1\right)\left(x+1\right)}\right]:\frac{x^2+x+1-x^2-4}{x^2+x+1}\)
\(=\frac{2x^2+1-x-1}{\left(x-1\right)\left(x+1\right)}:\frac{x-3}{x^2+x+1}\)
\(=\frac{2x^2-x}{\left(x-1\right)\left(x+1\right)}.\frac{x^2+x+1}{x-3}\)
bài này đến đây cậu làm tiếp chư tôi ko tách ra đc nữa
x^4 - 8x + 63
= (x^4 - 8x^2+16) + (5x^2 -20x +20) + (3x^2+12x +12) +15
= (x^2-4)^2 + 5.(x-2)^2 + 3.(x+2)^2 +15
= (x-2)^2.((x+2)^2+5) + 3.((x+2)^2+5)
= ((x-2)^2 +3).((x+2)^2 +5)
= (x^2-4x +7).(x^2 +4x +9)